Sarkar Tanoy, Nguyen Trieu, Moinuddin Sakib M, Stenmark Kurt R, Nozik Eva S, Saha Dipongkor, Ahsan Fakhrul
Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA.
Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA.
Micromachines (Basel). 2022 Sep 7;13(9):1483. doi: 10.3390/mi13091483.
Pulmonary arterial hypertension (PAH) is a rare pulmonary vascular disease that affects people of all ethnic origins and age groups including newborns. In PAH, pulmonary arteries and arterioles undergo a series of pathological changes including remodeling of the entire pulmonary vasculatures and extracellular matrices, mis-localized growth of pulmonary arterial cells, and development of glomeruloid-like lesions called plexiform lesions. Traditionally, various animal and cellular models have been used to understand PAH pathophysiology, investigate sex-disparity in PAH and monitor therapeutic efficacy of PAH medications. However, traditional models can only partially capture various pathological features of PAH, and they are not adaptable to combinatorial study design for deciphering intricately intertwined complex cellular processes implicated in PAH pathogenesis. While many microfluidic chip-based models are currently available for major diseases, no such disease-on-a-device model is available for PAH, an under investigated disease. In the absence of any chip-based models of PAH, we recently proposed a five-channel polydimethylsiloxane (PDMS)-based microfluidic device that can emulate major pathological features of PAH. However, our proposed model can make a bigger impact on the PAH field only when the larger scientific community engaged in PAH research can fabricate the device and develop the model in their laboratory settings. With this goal in mind, in this study, we have described the detailed methodologies for fabrication and development of the PAH chip model including a thorough explanation of scientific principles for various steps for chip fabrication, a detailed list of reagents, tools and equipment along with their source and catalogue numbers, description of laboratory setup, and cautionary notes. Finally, we explained the methodologies for on-chip cell seeding and application of this model for studying PAH pathophysiology. We believe investigators with little or no training in microfluidic chip fabrication can fabricate this eminently novel PAH-on-a-chip model. As such, this study will have a far-reaching impact on understanding PAH pathophysiology, unravelling the biological mystery associated with sexual dimorphism in PAH, and developing PAH therapy based on patient sex and age.
肺动脉高压(PAH)是一种罕见的肺血管疾病,影响所有种族和年龄组的人群,包括新生儿。在PAH中,肺动脉和小动脉会经历一系列病理变化,包括整个肺血管系统和细胞外基质的重塑、肺动脉细胞的异位生长以及称为丛状病变的类肾小球样病变的形成。传统上,各种动物和细胞模型已被用于了解PAH的病理生理学、研究PAH中的性别差异以及监测PAH药物的治疗效果。然而,传统模型只能部分捕捉PAH的各种病理特征,并且它们不适用于组合研究设计,以破译PAH发病机制中错综复杂的复杂细胞过程。虽然目前有许多基于微流控芯片的模型可用于主要疾病,但尚未有针对PAH这种研究不足的疾病的“疾病在芯片上”模型。在没有任何基于芯片的PAH模型的情况下,我们最近提出了一种基于五通道聚二甲基硅氧烷(PDMS)的微流控装置,该装置可以模拟PAH的主要病理特征。然而,只有当从事PAH研究的更大的科学界能够在他们的实验室环境中制造该装置并开发该模型时,我们提出的模型才能对PAH领域产生更大的影响。出于这个目标,在本研究中,我们描述了PAH芯片模型制造和开发的详细方法,包括对芯片制造各个步骤的科学原理的透彻解释、试剂、工具和设备的详细清单及其来源和目录编号、实验室设置的描述以及注意事项。最后,我们解释了芯片上细胞接种的方法以及该模型在研究PAH病理生理学中的应用。我们相信,在微流控芯片制造方面几乎没有或没有培训的研究人员可以制造出这种极具创新性的PAH芯片模型。因此,这项研究将对理解PAH病理生理学、揭开与PAH性别二态性相关的生物学奥秘以及基于患者性别和年龄开发PAH治疗方法产生深远影响。
Micromachines (Basel). 2022-9-7
Am J Physiol Lung Cell Mol Physiol. 2021-6-1
Am J Physiol Lung Cell Mol Physiol. 2019-10-2
G Ital Cardiol (Rome). 2012-6
Micromachines (Basel). 2025-3-31
Front Bioeng Biotechnol. 2024-7-11
Eur J Pharm Sci. 2024-4-1
Arterioscler Thromb Vasc Biol. 2023-12
J Drug Target. 2023-6
Biosensors (Basel). 2022-8-1
Diseases. 2018-5-16
Am J Respir Cell Mol Biol. 2016-4
Nat Biotechnol. 2014-8