Goswami Suchandra, Gupta Pushpendra, Nayak Sagarika, Bedanta Subhankar, Iglesias Òscar, Chakraborty Manashi, De Debajyoti
Material Science Research Lab, The Neotia University, Sarisa, D.H. Road, 24 Pgs (South), Sarisha 743368, West Bengal, India.
Laboratory for Nanomagnetism and Magnetic Materials (LNMM), School of Physical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Jatni 752050, India.
Nanomaterials (Basel). 2022 Sep 12;12(18):3159. doi: 10.3390/nano12183159.
This article reports the dependence of exchange bias (EB) effect on interparticle interactions in nanocrystalline Co/CoO core/shell structures, synthesized using the conventional sol-gel technique. Analysis via powder X-Ray diffraction (PXRD) studies and transmission electron microscope (TEM) images confirm the presence of crystalline phases of core/shell Co/CoO with average particle size ≈ 18 nm. Volume fraction (φ) is varied (from 20% to 1%) by the introduction of a stoichiometric amount of non-magnetic amorphous silica matrix (SiO2) which leads to a change in interparticle interaction (separation). The influence of exchange and dipolar interactions on the EB effect, caused by the variation in interparticle interaction (separation) is studied for a series of Co/CoO core/shell nanoparticle systems. Studies of thermal variation of magnetization (M-T) and magnetic hysteresis loops (M-H) for the series point towards strong dependence of magnetic properties on dipolar interaction in concentrated assemblies whereas individual nanoparticle response is dominant in isolated nanoparticle systems. The analysis of the EB effect reveals a monotonic increase of coercivity (HC) and EB field (HE) with increasing volume fraction. When the nanoparticles are close enough and the interparticle interaction is significant, collective behavior leads to an increase in the effective antiferromagnetic (AFM) CoO shell thickness which results in high HC and HE. Moreover, in concentrated assemblies, the dipolar field superposes to the local exchange field and enhances the EB effect contributing as an additional source of unidirectional anisotropy.
本文报道了采用传统溶胶 - 凝胶技术合成的纳米晶Co/CoO核壳结构中,交换偏置(EB)效应与粒子间相互作用的相关性。通过粉末X射线衍射(PXRD)研究和透射电子显微镜(TEM)图像分析证实了平均粒径约为18 nm的核壳Co/CoO晶相的存在。通过引入化学计量的非磁性无定形二氧化硅基质(SiO2)来改变体积分数(φ)(从20%到1%),这导致了粒子间相互作用(间距)的变化。对于一系列Co/CoO核壳纳米粒子系统,研究了由粒子间相互作用(间距)变化引起的交换和偶极相互作用对EB效应的影响。对该系列的磁化强度热变化(M - T)和磁滞回线(M - H)的研究表明,在密集组装中,磁性性能强烈依赖于偶极相互作用,而在孤立纳米粒子系统中,单个纳米粒子的响应占主导地位。对EB效应的分析表明,矫顽力(HC)和EB场(HE)随体积分数的增加而单调增加。当纳米粒子足够接近且粒子间相互作用显著时,集体行为会导致有效反铁磁(AFM)CoO壳层厚度增加,从而导致高HC和HE。此外,在密集组装中,偶极场叠加到局部交换场上,增强了EB效应,作为单向各向异性的额外来源起作用。