Vidal Catalina, González Felipe, Santander Christian, Pérez Rodrigo, Gallardo Víctor, Santos Cledir, Aponte Humberto, Ruiz Antonieta, Cornejo Pablo
Center for Research on Mycorrhizae and Agro-Environmental Sustainability (CIMYSA), Universidad de la Frontera, Temuco 4811-230, Chile.
Doctorate in Sciences Mention Applied Cellular and Molecular Biology, Universidad de la Frontera, Temuco 4811-230, Chile.
Plants (Basel). 2022 Sep 19;11(18):2437. doi: 10.3390/plants11182437.
Drought generates a complex scenario worldwide in which agriculture should urgently be reframed from an integrative point of view. It includes the search for new water resources and the use of tolerant crops and genotypes, improved irrigation systems, and other less explored alternatives that are very important, such as biotechnological tools that may increase the water use efficiency. Currently, a large body of evidence highlights the role of specific strains in the main microbial rhizosphere groups (arbuscular mycorrhizal fungi, yeasts, and bacteria) on increasing the drought tolerance of their host plants through diverse plant growth-promoting (PGP) characteristics. With this background, it is possible to suggest that the joint use of distinct PGP microbes could produce positive interactions or additive beneficial effects on their host plants if their co-inoculation does not generate antagonistic responses. To date, such effects have only been partially analyzed by using single omics tools, such as genomics, metabolomics, or proteomics. However, there is a gap of information in the use of multi-omics approaches to detect interactions between PGP and host plants. This approach must be the next scale-jump in the study of the interaction of soil-plant-microorganism. In this review, we analyzed the constraints posed by drought in the framework of an increasing global demand for plant production, integrating the important role played by the rhizosphere biota as a PGP agent. Using multi-omics approaches to understand in depth the processes that occur in plants in the presence of microorganisms can allow us to modulate their combined use and drive it to increase crop yields, improving production processes to attend the growing global demand for food.
干旱在全球范围内造成了复杂的局面,在此背景下,农业迫切需要从综合角度进行重新规划。这包括寻找新的水资源、使用耐旱作物和基因型、改进灌溉系统以及其他一些尚未充分探索但非常重要的替代方法,比如可能提高水分利用效率的生物技术工具。目前,大量证据表明,主要微生物根际群落(丛枝菌根真菌、酵母菌和细菌)中的特定菌株通过多种促进植物生长(PGP)的特性,在提高其宿主植物的耐旱性方面发挥着作用。基于此背景,可以推测,如果不同的PGP微生物共同接种不会产生拮抗反应,那么它们的联合使用可能会对宿主植物产生积极的相互作用或累加的有益效果。迄今为止,仅通过使用单一的组学工具,如基因组学、代谢组学或蛋白质组学,对这些效应进行了部分分析。然而,在使用多组学方法来检测PGP与宿主植物之间的相互作用方面,存在信息空白。这种方法必定是土壤-植物-微生物相互作用研究中的下一个重大突破。在本综述中,我们分析了在全球对植物产量需求不断增加的背景下干旱所带来的限制,整合了根际生物群作为PGP因子所发挥的重要作用。使用多组学方法深入了解植物在有微生物存在时所发生的过程,能够使我们调节它们的联合使用方式,并促使其提高作物产量,改善生产过程,以满足全球对粮食日益增长的需求。