Suppr超能文献

人臂运动预测在共享工作空间中避免碰撞。

Human Arm Motion Prediction for Collision Avoidance in a Shared Workspace.

机构信息

The Laboratoire d'Informatique de Grenoble, University of Grenoble Alpes, 38000 Grenoble, France.

Inria Centre at the University Grenoble Alpes, 38000 Grenoble, France.

出版信息

Sensors (Basel). 2022 Sep 14;22(18):6951. doi: 10.3390/s22186951.

Abstract

Industry 4.0 transforms classical industrial systems into more human-centric and digitized systems. Close human-robot collaboration is becoming more frequent, which means security and efficiency issues need to be carefully considered. In this paper, we propose to equip robots with exteroceptive sensors and online motion generation so that the robot is able to perceive and predict human trajectories and react to the motion of the human in order to reduce the occurrence of the collisions. The dataset for training is generated in a real environment in which a human and a robot are sharing their workspace. An Encoder-Decoder based network is proposed to predict the human hand trajectories. A Model Predictive Control (MPC) framework is also proposed, which is able to plan a collision-free trajectory in the shared workspace based on this human motion prediction. The proposed framework is validated in a real environment that ensures collision free collaboration between humans and robots in a shared workspace.

摘要

工业 4.0 将经典的工业系统转变为更加以人为中心和数字化的系统。人机协作越来越频繁,这意味着需要仔细考虑安全和效率问题。在本文中,我们提出为机器人配备外部传感器和在线运动生成,以便机器人能够感知和预测人体轨迹,并对人体的运动做出反应,从而减少碰撞的发生。用于训练的数据集是在一个真实环境中生成的,其中一个人和一个机器人正在共享他们的工作空间。提出了一种基于编码器-解码器的网络来预测人手轨迹。还提出了一种模型预测控制(MPC)框架,它能够基于此人体运动预测在共享工作空间中规划无碰撞轨迹。该框架在一个真实环境中得到了验证,确保了在共享工作空间中人类和机器人之间的无碰撞协作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6845/9502074/1338b4a7d095/sensors-22-06951-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验