Suppr超能文献

稳健的手部跟踪用于手术遥绘。

Robust hand tracking for surgical telestration.

机构信息

Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany.

Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany.

出版信息

Int J Comput Assist Radiol Surg. 2022 Aug;17(8):1477-1486. doi: 10.1007/s11548-022-02637-9. Epub 2022 May 27.

Abstract

PURPOSE

As human failure has been shown to be one primary cause for post-operative death, surgical training is of the utmost socioeconomic importance. In this context, the concept of surgical telestration has been introduced to enable experienced surgeons to efficiently and effectively mentor trainees in an intuitive way. While previous approaches to telestration have concentrated on overlaying drawings on surgical videos, we explore the augmented reality (AR) visualization of surgical hands to imitate the direct interaction with the situs.

METHODS

We present a real-time hand tracking pipeline specifically designed for the application of surgical telestration. It comprises three modules, dedicated to (1) the coarse localization of the expert's hand and the subsequent (2) segmentation of the hand for AR visualization in the field of view of the trainee and (3) regression of keypoints making up the hand's skeleton. The semantic representation is obtained to offer the ability for structured reporting of the motions performed as part of the teaching.

RESULTS

According to a comprehensive validation based on a large data set comprising more than 14,000 annotated images with varying application-relevant conditions, our algorithm enables real-time hand tracking and is sufficiently accurate for the task of surgical telestration. In a retrospective validation study, a mean detection accuracy of 98%, a mean keypoint regression accuracy of 10.0 px and a mean Dice Similarity Coefficient of 0.95 were achieved. In a prospective validation study, it showed uncompromised performance when the sensor, operator or gesture varied.

CONCLUSION

Due to its high accuracy and fast inference time, our neural network-based approach to hand tracking is well suited for an AR approach to surgical telestration. Future work should be directed to evaluating the clinical value of the approach.

摘要

目的

由于人为失误已被证明是术后死亡的一个主要原因,因此手术培训具有至关重要的社会经济意义。在这种情况下,引入了手术遥绘的概念,以使经验丰富的外科医生能够以直观的方式有效地指导学员。虽然以前的遥绘方法集中在在手术视频上叠加绘图,但我们探索了手术手的增强现实 (AR) 可视化,以模仿与 situs 的直接交互。

方法

我们提出了一种专门为手术遥绘应用设计的实时手部跟踪管道。它由三个模块组成,分别用于(1)专家手部的粗略定位和随后(2)为学员的视野内的 AR 可视化分割手部,以及(3)手部骨骼的关键点回归。获得语义表示,以提供对作为教学一部分执行的运动进行结构化报告的能力。

结果

根据一个包含超过 14000 张带有不同应用相关条件的注释图像的大型数据集的全面验证,我们的算法能够实时跟踪手部,并且对于手术遥绘任务足够准确。在回顾性验证研究中,实现了 98%的平均检测精度、10.0px 的平均关键点回归精度和 0.95 的平均 Dice 相似性系数。在前瞻性验证研究中,当传感器、操作员或手势发生变化时,它表现出不受影响的性能。

结论

由于其高精度和快速推断时间,我们基于神经网络的手部跟踪方法非常适合用于 AR 手术遥绘。未来的工作应致力于评估该方法的临床价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2551/9307534/abe1c5615b9c/11548_2022_2637_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验