Suppr超能文献

使用卷积神经网络预测短期数据中心网络流量负载。

Forecasting short-term data center network traffic load with convolutional neural networks.

作者信息

Mozo Alberto, Ordozgoiti Bruno, Gómez-Canaval Sandra

机构信息

Dpto. Sistemas Informáticos, Universidad Politécnica de Madrid, Madrid, Spain.

出版信息

PLoS One. 2018 Feb 6;13(2):e0191939. doi: 10.1371/journal.pone.0191939. eCollection 2018.

Abstract

Efficient resource management in data centers is of central importance to content service providers as 90 percent of the network traffic is expected to go through them in the coming years. In this context we propose the use of convolutional neural networks (CNNs) to forecast short-term changes in the amount of traffic crossing a data center network. This value is an indicator of virtual machine activity and can be utilized to shape the data center infrastructure accordingly. The behaviour of network traffic at the seconds scale is highly chaotic and therefore traditional time-series-analysis approaches such as ARIMA fail to obtain accurate forecasts. We show that our convolutional neural network approach can exploit the non-linear regularities of network traffic, providing significant improvements with respect to the mean absolute and standard deviation of the data, and outperforming ARIMA by an increasingly significant margin as the forecasting granularity is above the 16-second resolution. In order to increase the accuracy of the forecasting model, we exploit the architecture of the CNNs using multiresolution input distributed among separate channels of the first convolutional layer. We validate our approach with an extensive set of experiments using a data set collected at the core network of an Internet Service Provider over a period of 5 months, totalling 70 days of traffic at the one-second resolution.

摘要

对内容服务提供商而言,数据中心的高效资源管理至关重要,因为预计未来几年90%的网络流量将通过数据中心。在此背景下,我们建议使用卷积神经网络(CNN)来预测穿越数据中心网络的流量的短期变化。该值是虚拟机活动的一个指标,可据此对数据中心基础设施进行相应调整。网络流量在秒级别的行为高度混乱,因此诸如自回归积分滑动平均模型(ARIMA)等传统时间序列分析方法无法获得准确的预测结果。我们表明,我们的卷积神经网络方法能够利用网络流量的非线性规律,在数据的平均绝对误差和标准差方面有显著改进,并且随着预测粒度高于16秒分辨率,其性能优于ARIMA的幅度越来越大。为了提高预测模型的准确性,我们利用卷积神经网络的架构,将多分辨率输入分布在第一个卷积层的不同通道中。我们使用在一家互联网服务提供商的核心网络上收集的数据集进行了大量实验,该数据集为期5个月,以一秒分辨率总计70天的流量,以此验证我们的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c59/5800645/54a9d443b9ea/pone.0191939.g001.jpg

相似文献

1
Forecasting short-term data center network traffic load with convolutional neural networks.
PLoS One. 2018 Feb 6;13(2):e0191939. doi: 10.1371/journal.pone.0191939. eCollection 2018.
3
4
City-Wide Traffic Flow Forecasting Using a Deep Convolutional Neural Network.
Sensors (Basel). 2020 Jan 11;20(2):421. doi: 10.3390/s20020421.
5
Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network.
Sensors (Basel). 2018 Mar 6;18(3):789. doi: 10.3390/s18030789.
7
Dynamic Learning Framework for Smooth-Aided Machine-Learning-Based Backbone Traffic Forecasts.
Sensors (Basel). 2022 May 9;22(9):3592. doi: 10.3390/s22093592.
9
Research on Satellite Network Traffic Prediction Based on Improved GRU Neural Network.
Sensors (Basel). 2022 Nov 10;22(22):8678. doi: 10.3390/s22228678.
10
2D Convolutional Neural Markov Models for Spatiotemporal Sequence Forecasting.
Sensors (Basel). 2020 Jul 28;20(15):4195. doi: 10.3390/s20154195.

引用本文的文献

1
A TSENet Model for Predicting Cellular Network Traffic.
Sensors (Basel). 2024 Mar 7;24(6):1713. doi: 10.3390/s24061713.
2
Transformers for Multi-Horizon Forecasting in an Industry 4.0 Use Case.
Sensors (Basel). 2023 Mar 27;23(7):3516. doi: 10.3390/s23073516.
3
MAG-D: A multivariate attention network based approach for cloud workload forecasting.
Future Gener Comput Syst. 2023 May;142:376-392. doi: 10.1016/j.future.2023.01.002. Epub 2023 Jan 10.
4
Multi-network collaborative lift-drag ratio prediction and airfoil optimization based on residual network and generative adversarial network.
Front Bioeng Biotechnol. 2022 Sep 6;10:927064. doi: 10.3389/fbioe.2022.927064. eCollection 2022.
5
Chlorophyll soft-sensor based on machine learning models for algal bloom predictions.
Sci Rep. 2022 Aug 8;12(1):13529. doi: 10.1038/s41598-022-17299-5.

本文引用的文献

1
Forecasting Natural Gas Prices Using Wavelets, Time Series, and Artificial Neural Networks.
PLoS One. 2015 Nov 5;10(11):e0142064. doi: 10.1371/journal.pone.0142064. eCollection 2015.
2
Long short-term memory.
Neural Comput. 1997 Nov 15;9(8):1735-80. doi: 10.1162/neco.1997.9.8.1735.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验