Mozo Alberto, Ordozgoiti Bruno, Gómez-Canaval Sandra
Dpto. Sistemas Informáticos, Universidad Politécnica de Madrid, Madrid, Spain.
PLoS One. 2018 Feb 6;13(2):e0191939. doi: 10.1371/journal.pone.0191939. eCollection 2018.
Efficient resource management in data centers is of central importance to content service providers as 90 percent of the network traffic is expected to go through them in the coming years. In this context we propose the use of convolutional neural networks (CNNs) to forecast short-term changes in the amount of traffic crossing a data center network. This value is an indicator of virtual machine activity and can be utilized to shape the data center infrastructure accordingly. The behaviour of network traffic at the seconds scale is highly chaotic and therefore traditional time-series-analysis approaches such as ARIMA fail to obtain accurate forecasts. We show that our convolutional neural network approach can exploit the non-linear regularities of network traffic, providing significant improvements with respect to the mean absolute and standard deviation of the data, and outperforming ARIMA by an increasingly significant margin as the forecasting granularity is above the 16-second resolution. In order to increase the accuracy of the forecasting model, we exploit the architecture of the CNNs using multiresolution input distributed among separate channels of the first convolutional layer. We validate our approach with an extensive set of experiments using a data set collected at the core network of an Internet Service Provider over a period of 5 months, totalling 70 days of traffic at the one-second resolution.
对内容服务提供商而言,数据中心的高效资源管理至关重要,因为预计未来几年90%的网络流量将通过数据中心。在此背景下,我们建议使用卷积神经网络(CNN)来预测穿越数据中心网络的流量的短期变化。该值是虚拟机活动的一个指标,可据此对数据中心基础设施进行相应调整。网络流量在秒级别的行为高度混乱,因此诸如自回归积分滑动平均模型(ARIMA)等传统时间序列分析方法无法获得准确的预测结果。我们表明,我们的卷积神经网络方法能够利用网络流量的非线性规律,在数据的平均绝对误差和标准差方面有显著改进,并且随着预测粒度高于16秒分辨率,其性能优于ARIMA的幅度越来越大。为了提高预测模型的准确性,我们利用卷积神经网络的架构,将多分辨率输入分布在第一个卷积层的不同通道中。我们使用在一家互联网服务提供商的核心网络上收集的数据集进行了大量实验,该数据集为期5个月,以一秒分辨率总计70天的流量,以此验证我们的方法。