Suppr超能文献

用于阐明单细胞与批量基因表达之间关系的数学模型,以明确批量基因表达数据的解释。

Mathematical model for the relationship between single-cell and bulk gene expression to clarify the interpretation of bulk gene expression data.

作者信息

Okada Daigo, Zheng Cheng, Cheng Jian Hao

机构信息

Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, South Research Bldg. No.1(5F), 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto 6068507, Kyoto, Japan.

出版信息

Comput Struct Biotechnol J. 2022 Sep 5;20:4850-4859. doi: 10.1016/j.csbj.2022.08.062. eCollection 2022.

Abstract

BACKGROUND

Differential expression analysis is a standard approach in molecular biology. For example, genes whose expression levels differ between diseased and non-diseased samples are considered to be associated with that disease. On the other hand, differential variability analysis focuses on the differences of the variances of gene expression between sample groups. Although differential variability is also known to capture biological information, its interpretation remains unclear and controversial. Recent single-cell analyses have revealed that differences between sample groups can affect gene expression in a cellular subset-specific manner or by altering the proportion of a particular cellular subset. The aim of this study is to clarify the interpretation of mean and variance of bulk gene expression data.

METHOD

We developed a mathematical model in which the bulk gene expression value is proportional to the mean value of the single-cell gene expression profile. Based on this model, we performed theoretical, simulated and real single-cell RNA-seq data analyses.

RESULT AND CONCLUSION

We identified how differences in single-cell gene expression profiles affect the differences in the mean and the variance of bulk gene expression. It is shown that differential expression analysis of bulk expression data can overlook significant changes in gene expression at the single-cell level. Further, differential variability analysis capture the complex feature affected by different gene expression shifts for each subset, changes in the proportions of cellular subsets, and variation in single-cell distribution parameters among samples.

摘要

背景

差异表达分析是分子生物学中的一种标准方法。例如,在患病样本和未患病样本之间表达水平不同的基因被认为与该疾病相关。另一方面,差异变异性分析关注样本组之间基因表达方差的差异。尽管差异变异性也被认为可以捕获生物学信息,但其解释仍不明确且存在争议。最近的单细胞分析表明,样本组之间的差异可以以细胞亚群特异性的方式或通过改变特定细胞亚群的比例来影响基因表达。本研究的目的是阐明批量基因表达数据均值和方差的解释。

方法

我们开发了一个数学模型,其中批量基因表达值与单细胞基因表达谱的均值成正比。基于该模型,我们进行了理论、模拟和实际单细胞RNA测序数据分析。

结果与结论

我们确定了单细胞基因表达谱的差异如何影响批量基因表达均值和方差的差异。结果表明,批量表达数据的差异表达分析可能会忽略单细胞水平上基因表达的显著变化。此外,差异变异性分析捕获了受每个亚群不同基因表达变化、细胞亚群比例变化以及样本间单细胞分布参数变化影响的复杂特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c06/9474327/6ea6a8199c70/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验