Suppr超能文献

基于个体新生儿数据的集成学习用于癫痫发作检测。

Ensemble Learning Using Individual Neonatal Data for Seizure Detection.

机构信息

Faculty of Industrial Engineering, Mechanical Engineering and Computer ScienceUniversity of Iceland 107 Reykjavik Iceland.

Kvikna Medical ehf. 110 Reykjavik Iceland.

出版信息

IEEE J Transl Eng Health Med. 2022 Aug 23;10:4901111. doi: 10.1109/JTEHM.2022.3201167. eCollection 2022.

Abstract

OBJECTIVE

Sharing medical data between institutions is difficult in practice due to data protection laws and official procedures within institutions. Therefore, most existing algorithms are trained on relatively small electroencephalogram (EEG) data sets which is likely to be detrimental to prediction accuracy. In this work, we simulate a case when the data can not be shared by splitting the publicly available data set into disjoint sets representing data in individual institutions.

METHODS AND PROCEDURES

We propose to train a (local) detector in each institution and aggregate their individual predictions into one final prediction. Four aggregation schemes are compared, namely, the majority vote, the mean, the weighted mean and the Dawid-Skene method. The method was validated on an independent data set using only a subset of EEG channels.

RESULTS

The ensemble reaches accuracy comparable to a single detector trained on all the data when sufficient amount of data is available in each institution.

CONCLUSION

The weighted mean aggregation scheme showed best performance, it was only marginally outperformed by the Dawid-Skene method when local detectors approach performance of a single detector trained on all available data.

CLINICAL IMPACT

Ensemble learning allows training of reliable algorithms for neonatal EEG analysis without a need to share the potentially sensitive EEG data between institutions.

摘要

目的

由于数据保护法和机构内部的官方程序,机构之间共享医学数据在实践中存在困难。因此,大多数现有的算法都是在相对较小的脑电图 (EEG) 数据集上进行训练的,这可能不利于预测准确性。在这项工作中,我们通过将公开可用的数据集分割成代表单个机构数据的不相交集来模拟数据无法共享的情况。

方法和程序

我们建议在每个机构中训练一个(本地)检测器,并将它们的个体预测汇总为一个最终预测。比较了四种聚合方案,即多数投票、平均值、加权平均值和 Dawid-Skene 方法。该方法仅使用 EEG 通道的子集在独立数据集上进行了验证。

结果

当每个机构都有足够数量的数据时,集成达到了与在所有数据上训练的单个检测器相当的准确性。

结论

加权平均值聚合方案表现最佳,当本地检测器接近在所有可用数据上训练的单个检测器的性能时,仅略逊于 Dawid-Skene 方法。

临床影响

无需在机构之间共享潜在敏感的 EEG 数据,集合学习允许为新生儿 EEG 分析训练可靠的算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a884/9484737/ad346dda8b60/borov1ab-3201167.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验