Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
Shenzhen Bay Laboratory, Shenzhen 518132, China.
J Chem Theory Comput. 2022 Oct 11;18(10):6386-6395. doi: 10.1021/acs.jctc.2c00743. Epub 2022 Sep 23.
The structural characterization of protein-peptide interactions is fundamental to elucidating biological processes and designing peptide drugs. Molecular dynamics (MD) simulations are extensively used to study biomolecular systems. However, simulating the protein-peptide binding process is usually quite expensive. Based on our previous studies, herein, we propose a simple and effective method to predict the binding site and pose of the peptide simultaneously using high-temperature (high-) MD simulations with the RSFF2C force field. Thousands of binding events (nonspecific or specific) can be sampled during microseconds of high- MD. From density-based clustering analysis, the structures of all of the 12 complexes (nine with linear peptides and three with cyclic peptides) can be successfully predicted with root-mean-square deviation (RMSD) < 2.5 Å. By directly simulating the process of the ligand binding onto the receptor, our method approaches experimental precision for the first time, significantly surpassing previous protein-peptide docking methods in terms of accuracy.
蛋白质-肽相互作用的结构特征是阐明生物过程和设计肽类药物的基础。分子动力学 (MD) 模拟被广泛用于研究生物分子系统。然而,模拟蛋白质-肽结合过程通常非常昂贵。基于我们之前的研究,本文提出了一种简单有效的方法,使用 RSFF2C 力场的高温 (高) MD 模拟同时预测肽的结合位点和构象。在高 MD 的微秒时间内,可以采样数千个结合事件(非特异性或特异性)。通过基于密度的聚类分析,可以成功预测所有 12 个复合物(9 个线性肽和 3 个环状肽)的结构,均方根偏差 (RMSD) < 2.5 Å。通过直接模拟配体与受体的结合过程,我们的方法首次达到了实验精度,在准确性方面显著超过了以前的蛋白质-肽对接方法。