Suppr超能文献

基于高温分子动力学模拟的蛋白质-肽结合准确预测。

Accurate Prediction for Protein-Peptide Binding Based on High-Temperature Molecular Dynamics Simulations.

机构信息

Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.

Shenzhen Bay Laboratory, Shenzhen 518132, China.

出版信息

J Chem Theory Comput. 2022 Oct 11;18(10):6386-6395. doi: 10.1021/acs.jctc.2c00743. Epub 2022 Sep 23.

Abstract

The structural characterization of protein-peptide interactions is fundamental to elucidating biological processes and designing peptide drugs. Molecular dynamics (MD) simulations are extensively used to study biomolecular systems. However, simulating the protein-peptide binding process is usually quite expensive. Based on our previous studies, herein, we propose a simple and effective method to predict the binding site and pose of the peptide simultaneously using high-temperature (high-) MD simulations with the RSFF2C force field. Thousands of binding events (nonspecific or specific) can be sampled during microseconds of high- MD. From density-based clustering analysis, the structures of all of the 12 complexes (nine with linear peptides and three with cyclic peptides) can be successfully predicted with root-mean-square deviation (RMSD) < 2.5 Å. By directly simulating the process of the ligand binding onto the receptor, our method approaches experimental precision for the first time, significantly surpassing previous protein-peptide docking methods in terms of accuracy.

摘要

蛋白质-肽相互作用的结构特征是阐明生物过程和设计肽类药物的基础。分子动力学 (MD) 模拟被广泛用于研究生物分子系统。然而,模拟蛋白质-肽结合过程通常非常昂贵。基于我们之前的研究,本文提出了一种简单有效的方法,使用 RSFF2C 力场的高温 (高) MD 模拟同时预测肽的结合位点和构象。在高 MD 的微秒时间内,可以采样数千个结合事件(非特异性或特异性)。通过基于密度的聚类分析,可以成功预测所有 12 个复合物(9 个线性肽和 3 个环状肽)的结构,均方根偏差 (RMSD) < 2.5 Å。通过直接模拟配体与受体的结合过程,我们的方法首次达到了实验精度,在准确性方面显著超过了以前的蛋白质-肽对接方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验