Suppr超能文献

正常妊娠期间的人类血浆蛋白质组。

Human Plasma Proteome During Normal Pregnancy.

机构信息

Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States.

Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States.

出版信息

J Proteome Res. 2022 Nov 4;21(11):2687-2702. doi: 10.1021/acs.jproteome.2c00391. Epub 2022 Sep 26.

Abstract

The human plasma proteome is underexplored despite its potential value for monitoring health and disease. Herein, using a recently developed aptamer-based platform, we profiled 7288 proteins in 528 plasma samples from 91 normal pregnancies (Gene Expression Omnibus identifier GSE206454). The coefficient of variation was <20% for 93% of analytes (median 7%), and a cross-platform correlation for selected key angiogenic and anti-angiogenic proteins was significant. Gestational age was associated with changes in 953 proteins, including highly modulated placenta- and decidua-specific proteins, and they were enriched in biological processes including regulation of growth, angiogenesis, immunity, and inflammation. The abundance of proteins corresponding to RNAs specific to populations of cells previously described by single-cell RNA-Seq analysis of the placenta was highly modulated throughout gestation. Furthermore, machine learning-based prediction of gestational age and of time from sampling to term delivery compared favorably with transcriptomic models (mean absolute error of 2 weeks). These results suggested that the plasma proteome may provide a non-invasive readout of placental cellular dynamics and serve as a blueprint for investigating obstetrical disease.

摘要

尽管人类血浆蛋白质组具有监测健康和疾病的潜在价值,但对其的研究仍不够充分。在此,我们使用一种新开发的基于适配体的平台,对 91 例正常妊娠(基因表达综合数据库标识符 GSE206454)的 528 个血浆样本中的 7288 种蛋白质进行了分析。93%的分析物(中位数为 7%)的变异系数<20%,选定的关键血管生成和抗血管生成蛋白的跨平台相关性具有显著性。妊娠年龄与 953 种蛋白质的变化相关,包括高度调节的胎盘和蜕膜特异性蛋白质,它们富集于包括生长调节、血管生成、免疫和炎症在内的生物学过程。与胎盘单细胞 RNA-Seq 分析之前描述的细胞群体相对应的蛋白质的丰度在整个妊娠期间高度调节。此外,基于机器学习的妊娠年龄和从采样到足月分娩时间的预测与转录组模型相比表现良好(平均绝对误差为 2 周)。这些结果表明,血浆蛋白质组可能为胎盘细胞动力学提供一种非侵入性的检测手段,并为研究产科疾病提供一个蓝图。

相似文献

1
Human Plasma Proteome During Normal Pregnancy.
J Proteome Res. 2022 Nov 4;21(11):2687-2702. doi: 10.1021/acs.jproteome.2c00391. Epub 2022 Sep 26.
2
A proteomic clock of human pregnancy.
Am J Obstet Gynecol. 2018 Mar;218(3):347.e1-347.e14. doi: 10.1016/j.ajog.2017.12.208. Epub 2017 Dec 24.
3
The maternal plasma proteome changes as a function of gestational age in normal pregnancy: a longitudinal study.
Am J Obstet Gynecol. 2017 Jul;217(1):67.e1-67.e21. doi: 10.1016/j.ajog.2017.02.037. Epub 2017 Mar 3.
6
The prediction of late-onset preeclampsia: Results from a longitudinal proteomics study.
PLoS One. 2017 Jul 24;12(7):e0181468. doi: 10.1371/journal.pone.0181468. eCollection 2017.
9
Placental Proteomics Provides Insights into Pathophysiology of Pre-Eclampsia and Predicts Possible Markers in Plasma.
J Proteome Res. 2017 Feb 3;16(2):1050-1060. doi: 10.1021/acs.jproteome.6b00955. Epub 2017 Jan 26.

引用本文的文献

2
Exploring structured molecular landscape from single-cell multi-omics data by an explainable multimodal model.
iScience. 2024 Nov 2;27(12):111131. doi: 10.1016/j.isci.2024.111131. eCollection 2024 Dec 20.
3
Proteomic Profiles of Maternal Plasma Extracellular Vesicles for Prediction of Preeclampsia.
Am J Reprod Immunol. 2024 Oct;92(4):e13928. doi: 10.1111/aji.13928.
4
An Early Gestation Plasma Inflammasome in Rural Bangladeshi Women.
Biomolecules. 2024 Jun 21;14(7):736. doi: 10.3390/biom14070736.
5
Machine learning: a new era for cardiovascular pregnancy physiology and cardio-obstetrics research.
Am J Physiol Heart Circ Physiol. 2024 Aug 1;327(2):H417-H432. doi: 10.1152/ajpheart.00149.2024. Epub 2024 Jun 7.
6
Exosomal small RNA profiling in first-trimester maternal blood explores early molecular pathways of preterm preeclampsia.
Front Immunol. 2024 Feb 22;15:1321191. doi: 10.3389/fimmu.2024.1321191. eCollection 2024.
7
Deciphering maternal-fetal cross-talk in the human placenta during parturition using single-cell RNA sequencing.
Sci Transl Med. 2024 Jan 10;16(729):eadh8335. doi: 10.1126/scitranslmed.adh8335.
8
The emerging Janus face of SVEP1 in development and disease.
Trends Mol Med. 2023 Nov;29(11):939-950. doi: 10.1016/j.molmed.2023.08.002. Epub 2023 Sep 4.
9
Comparative predictive power of serum vs plasma proteomic signatures in feto-maternal medicine.
AJOG Glob Rep. 2023 Jun 12;3(3):100244. doi: 10.1016/j.xagr.2023.100244. eCollection 2023 Aug.
10
Pregnancy-specific responses to COVID-19 revealed by high-throughput proteomics of human plasma.
Commun Med (Lond). 2023 Apr 4;3(1):48. doi: 10.1038/s43856-023-00268-y.

本文引用的文献

1
Maternal plasma lipids are involved in the pathogenesis of preterm birth.
Gigascience. 2022 Feb 15;11. doi: 10.1093/gigascience/giac004.
2
Early prediction of preeclampsia in pregnancy with cell-free RNA.
Nature. 2022 Feb;602(7898):689-694. doi: 10.1038/s41586-022-04410-z. Epub 2022 Feb 9.
4
Prediction of preeclampsia throughout gestation with maternal characteristics and biophysical and biochemical markers: a longitudinal study.
Am J Obstet Gynecol. 2022 Jan;226(1):126.e1-126.e22. doi: 10.1016/j.ajog.2021.01.020. Epub 2021 Apr 16.
5
RNA profiles reveal signatures of future health and disease in pregnancy.
Nature. 2022 Jan;601(7893):422-427. doi: 10.1038/s41586-021-04249-w. Epub 2022 Jan 5.
6
Cytokine Patterns in Maternal Serum From First Trimester to Term and Beyond.
Front Immunol. 2021 Oct 14;12:752660. doi: 10.3389/fimmu.2021.752660. eCollection 2021.
8
Progress Identifying and Analyzing the Human Proteome: 2021 Metrics from the HUPO Human Proteome Project.
J Proteome Res. 2021 Dec 3;20(12):5227-5240. doi: 10.1021/acs.jproteome.1c00590. Epub 2021 Oct 20.
9
The Distinct Immune Nature of the Fetal Inflammatory Response Syndrome Type I and Type II.
Immunohorizons. 2021 Sep 14;5(9):735-751. doi: 10.4049/immunohorizons.2100047.
10
Pathway analysis in metabolomics: Recommendations for the use of over-representation analysis.
PLoS Comput Biol. 2021 Sep 7;17(9):e1009105. doi: 10.1371/journal.pcbi.1009105. eCollection 2021 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验