Suppr超能文献

一种用于磁共振图像中椎间盘突出自动检测与分类的深度学习模型。

A Deep Learning Model for Automatic Detection and Classification of Disc Herniation in Magnetic Resonance Images.

作者信息

Sustersic Tijana, Rankovic Vesna, Milovanovic Vladimir, Kovacevic Vojin, Rasulic Lukas, Filipovic Nenad

出版信息

IEEE J Biomed Health Inform. 2022 Dec;26(12):6036-6046. doi: 10.1109/JBHI.2022.3209585. Epub 2022 Dec 7.

Abstract

Localization of lumbar discs in magnetic resonance imaging (MRI) is a challenging task, due to a vast range of shape, size, number, and appearance of discs and vertebrae. Based on a review of the cutting-edge methods, the majority of applied techniques are either semi-automatic, extremely sensitive to change in parameters, or involve further modification of the results. All of the above represents a motivation for implementing deep learning-based approaches for automatic segmentation and classification of disc herniation in MR images. This paper proposes a complete automated process based on deep learning to diagnose disc herniation. The methodology includes several steps starting from segmentation of region of interest (ROI), in this case disc area, bounding box cropping and enhancement of ROI, after which the image is classified based on convolutional neural network (CNN) into adequate classes (healthy, bulge, central, right or left herniation for axial view and healthy, L4/L5, L5/S1 level of herniation in sagittal view). The results show high accuracy of segmentation for both axial view (dice = 0.961, IOU = 0.925) and sagittal view (dice = 0.897, IOU = 0.813) images. After cropping and enhancing the region of interest, accuracy of classification was 0.87 for axial view images and 0.91 for sagittal view images. Comparison with the literature shows that proposed methodology outperforms state-of-the-art results when it comes to multiclassification problems. A fully automated decision support system for disc hernia diagnosis can assist in generating diagnostic findings in a timely manner, while human mistakes caused by cognitive overload and procedure-related errors can be reduced.

摘要

由于椎间盘和椎体的形状、大小、数量及外观变化范围极大,因此在磁共振成像(MRI)中对腰椎间盘进行定位是一项具有挑战性的任务。基于对前沿方法的综述,大多数应用技术要么是半自动的,对参数变化极为敏感,要么需要对结果进行进一步修改。上述所有情况都促使人们采用基于深度学习的方法来对MR图像中的椎间盘突出进行自动分割和分类。本文提出了一种基于深度学习的完整自动化流程来诊断椎间盘突出。该方法包括几个步骤,首先是感兴趣区域(ROI)的分割,在这种情况下是椎间盘区域,然后进行边界框裁剪和ROI增强,之后基于卷积神经网络(CNN)将图像分类为适当的类别(轴向视图的健康、膨出、中央、右侧或左侧突出,以及矢状视图的健康、L4/L5、L5/S1突出水平)。结果表明,轴向视图(骰子系数=0.961,交并比=0.925)和矢状视图(骰子系数=0.897,交并比=0.813)图像的分割准确率都很高。在裁剪和增强感兴趣区域后,轴向视图图像的分类准确率为0.87,矢状视图图像的分类准确率为0.91。与文献的比较表明,在多分类问题上,所提出的方法优于现有技术的结果。一个用于椎间盘突出诊断的全自动决策支持系统可以帮助及时生成诊断结果,同时减少因认知过载和与程序相关的错误导致的人为失误。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验