Suppr超能文献

基于深度学习的多模态图像分析预测经皮椎体后凸成形术中骨水泥渗漏:模型开发方案及前瞻性和外部数据集验证

Deep learning-based multimodal image analysis predicts bone cement leakage during percutaneous kyphoplasty: protocol for model development, and validation by prospective and external datasets.

作者信息

Xi Yu, Chen Ruiyuan, Wang Tianyi, Zang Lei, Jiao Shuncheng, Xie Tianlang, Wu Qichao, Wang Aobo, Fan Ning, Yuan Shuo, Du Peng

机构信息

Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.

Department of Spine Surgery, Beijing Shunyi Hospital, Beijing, China.

出版信息

Front Med (Lausanne). 2024 Sep 19;11:1479187. doi: 10.3389/fmed.2024.1479187. eCollection 2024.

Abstract

BACKGROUND

Bone cement leakage (BCL) is one of the most prevalent complications of percutaneous kyphoplasty (PKP) for treating osteoporotic vertebral compression fracture (OVCF), which may result in severe secondary complications and poor outcomes. Previous studies employed several traditional machine learning (ML) models to predict BCL preoperatively, but effective and intelligent methods to bridge the distance between current models and real-life clinical applications remain lacking.

METHODS

We will develop a deep learning (DL)-based prediction model that directly analyzes preoperative computed tomography (CT) and magnetic resonance imaging (MRI) of patients with OVCF to accurately predict BCL occurrence and classification during PKP. This retrospective study includes a retrospective internal dataset for DL model training and validation, a prospective internal dataset, and a cross-center external dataset for model testing. We will evaluate not only model's predictive performance, but also its reliability by calculating its consistency with reference standards and comparing it with that of clinician prediction.

DISCUSSION

The model holds an imperative clinical significance. Clinicians can formulate more targeted treatment strategies to minimize the incidence of BCL, thereby improving clinical outcomes by preoperatively identifying patients at high risk for each BCL subtype. In particular, the model holds great potential to be extended and applied in remote areas where medical resources are relatively scarce so that more patients can benefit from quality perioperative evaluation and management strategies. Moreover, the model will efficiently promote information sharing and decision-making between clinicians and patients, thereby increasing the overall quality of healthcare services.

摘要

背景

骨水泥渗漏(BCL)是经皮椎体后凸成形术(PKP)治疗骨质疏松性椎体压缩骨折(OVCF)最常见的并发症之一,可能导致严重的继发并发症和不良预后。以往的研究采用了几种传统的机器学习(ML)模型来术前预测BCL,但仍缺乏有效且智能的方法来弥合当前模型与实际临床应用之间的差距。

方法

我们将开发一种基于深度学习(DL)的预测模型,该模型直接分析OVCF患者的术前计算机断层扫描(CT)和磁共振成像(MRI),以准确预测PKP期间BCL的发生和分类。这项回顾性研究包括一个用于DL模型训练和验证的回顾性内部数据集、一个前瞻性内部数据集以及一个用于模型测试的跨中心外部数据集。我们不仅将评估模型的预测性能,还将通过计算其与参考标准的一致性并与临床医生预测的一致性进行比较来评估其可靠性。

讨论

该模型具有重要的临床意义。临床医生可以制定更具针对性的治疗策略,以尽量减少BCL的发生率,从而通过术前识别每种BCL亚型的高风险患者来改善临床结局。特别是,该模型在医疗资源相对稀缺的偏远地区具有很大的扩展和应用潜力,以便更多患者能够受益于优质的围手术期评估和管理策略。此外,该模型将有效地促进临床医生与患者之间的信息共享和决策,从而提高医疗服务的整体质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc43/11446777/0216ab15703f/fmed-11-1479187-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验