Wang Zhiping Paul, Li Xi, Matsumoto Nicholas, Venkatesan Mythreye, Chang Jui-Hsuan, Moran Jay, Choi Hyunjun, Li Binglan, Meng Yufei, Hernandez Miguel E, Moore Jason H
Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center, 700 N. San Vicente Blvd., Pacific Design Center, Suite G-541H, West Hollywood, 90069, CA, USA.
BioData Min. 2025 Aug 5;18(1):51. doi: 10.1186/s13040-025-00466-5.
Drug repurposing (DR) offers a promising alternative to the high cost and low success rate of traditional drug development, especially for complex diseases like Alzheimer's disease (AD). This study addressed DR for AD from three key angles: (1) demonstrating how disease-specific knowledge graphs can improve DR performance, (2) evaluating the role of large language models (LLMs) in enhancing the usability and efficiency of these graphs, and (3) assessing whether Graph-of-Thoughts (GoT)-enhanced LLMs, when integrated with AD knowledge graphs, can outperform traditional machine learning and LLM-based approaches. We tested five distinct DR strategies (DR1-DR5) for AD: DR1, a machine learning method using TxGNN; DR2, a machine learning model leveraging the Alzheimer's KnowledgeBase (AlzKB); DR3, an LLM-based chatbot built on AlzKB; DR4, our ESCARGOT framework combining GoT-enhanced LLMs with AlzKB; and DR5, a general reasoning-driven LLM approach. Results showed that AlzKB significantly improved DR outcomes. ESCARGOT further enhanced performance while reducing the need for coding or advanced expertise in knowledge graph analysis. Because the architecture of AlzKB is easily adaptable to other diseases and ESCARGOT can integrate with various knowledge graph platforms, this framework offers a broadly applicable, innovative tool for accelerating drug discovery through repurposing.
药物重新利用(DR)为传统药物开发的高成本和低成功率提供了一种有前景的替代方案,尤其是对于像阿尔茨海默病(AD)这样的复杂疾病。本研究从三个关键角度探讨了针对AD的药物重新利用:(1)展示特定疾病的知识图谱如何提高药物重新利用的性能,(2)评估大语言模型(LLMs)在增强这些图谱的可用性和效率方面的作用,以及(3)评估当与AD知识图谱集成时,思维图(GoT)增强的大语言模型是否能优于传统机器学习和基于大语言模型的方法。我们测试了针对AD的五种不同的药物重新利用策略(DR1 - DR5):DR1,一种使用TxGNN的机器学习方法;DR2,一种利用阿尔茨海默病知识库(AlzKB)的机器学习模型;DR3,一个基于AlzKB构建的基于大语言模型的聊天机器人;DR4,我们的ESCARGOT框架,将GoT增强的大语言模型与AlzKB相结合;以及DR5,一种通用的推理驱动的大语言模型方法。结果表明,AlzKB显著改善了药物重新利用的结果。ESCARGOT进一步提高了性能,同时减少了对知识图谱分析进行编码或具备高级专业知识的需求。由于AlzKB的架构易于适应其他疾病,并且ESCARGOT可以与各种知识图谱平台集成,因此该框架为通过重新利用加速药物发现提供了一种广泛适用的创新工具。