Wang Yi-Feng, Zhou Yaxin, Sun JiaBei, Wang Xiaotong, Jia Yaru, Ge Kun, Yan Yan, Dawson Kenneth A, Guo Shutao, Zhang Jinchao, Liang Xing-Jie
Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260 China.
Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190 China.
Nano Res. 2023;16(1):715-734. doi: 10.1007/s12274-022-4849-6. Epub 2022 Sep 16.
Nanoparticles-based drug delivery systems have attracted significant attention in biomedical fields because they can deliver loaded cargoes to the target site in a controlled manner. However, tremendous challenges must still be overcome to reach the expected targeting and therapeutic efficacy . These challenges mainly arise because the interaction between nanoparticles and biological systems is complex and dynamic and is influenced by the physicochemical properties of the nanoparticles and the heterogeneity of biological systems. Importantly, once the nanoparticles are injected into the blood, a protein corona will inevitably form on the surface. The protein corona creates a new biological identity which plays a vital role in mediating the bio-nano interaction and determining the ultimate results. Thus, it is essential to understand how the protein corona affects the delivery journey of nanoparticles and what we can do to exploit the protein corona for better delivery efficiency. In this review, we first summarize the fundamental impact of the protein corona on the delivery journey of nanoparticles. Next, we emphasize the strategies that have been developed for tailoring and exploiting the protein corona to improve the transportation behavior of nanoparticles . Finally, we highlight what we need to do as a next step towards better understanding and exploitation of the protein corona. We hope these insights into the "Yin and Yang" effect of the protein corona will have profound implications for understanding the role of the protein corona in a wide range of nanoparticles.
基于纳米颗粒的药物递送系统在生物医学领域引起了广泛关注,因为它们能够以可控的方式将负载的药物输送到靶位点。然而,要实现预期的靶向性和治疗效果,仍必须克服巨大的挑战。这些挑战主要源于纳米颗粒与生物系统之间的相互作用复杂且动态,并且受到纳米颗粒的物理化学性质以及生物系统异质性的影响。重要的是,一旦纳米颗粒注入血液,其表面将不可避免地形成蛋白质冠层。蛋白质冠层赋予纳米颗粒新的生物学特性,这在介导生物-纳米相互作用以及决定最终结果方面起着至关重要的作用。因此,了解蛋白质冠层如何影响纳米颗粒的递送过程以及我们如何利用蛋白质冠层提高递送效率至关重要。在这篇综述中,我们首先总结蛋白质冠层对纳米颗粒递送过程的基本影响。接下来,我们重点介绍为定制和利用蛋白质冠层以改善纳米颗粒的转运行为而开发的策略。最后,我们强调作为进一步深入理解和利用蛋白质冠层的下一步需要做的事情。我们希望这些对蛋白质冠层“阴阳”效应的见解将对理解蛋白质冠层在广泛的纳米颗粒中的作用产生深远影响。
Acc Chem Res. 2021-1-19
Colloids Surf B Biointerfaces. 2019-4-3
J Control Release. 2018-1-4
Adv Healthc Mater. 2017-8-15
Expert Opin Drug Deliv. 2022-7
Front Bioeng Biotechnol. 2020-12-10
Drug Deliv Transl Res. 2025-6-14
Int J Nanomedicine. 2025-4-14
Chem Bio Eng. 2024-10-3
Curr Opin Biotechnol. 2024-2
ACS Nano. 2023-8-8
Int J Mol Sci. 2023-5-29
Exploration (Beijing). 2022-4-21
Exploration (Beijing). 2021-12-28
Exploration (Beijing). 2021-10-30
ACS Appl Mater Interfaces. 2022-5-4
J Control Release. 2022-5
Natl Sci Rev. 2021-4-24
ACS Appl Mater Interfaces. 2021-10-6