Wolff Natalie, Beuck Christine, Schaller Torsten, Epple Matthias
Inorganic Chemistry, Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen 45117 Essen Germany
Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen 45117 Essen Germany.
Nanoscale Adv. 2024 May 31;6(13):3285-3298. doi: 10.1039/d4na00139g. eCollection 2024 Jun 25.
Ultrasmall nanoparticles have a diameter between 1 and 3 nm at the border between nanoparticles and large molecules. Usually, their core consists of a metal, and the shell of a capping ligand with sulfur or phosphorus as binding atoms. While the core structure can be probed by electron microscopy, electron and powder diffraction, and single-crystal structure analysis for atom-sharp clusters, it is more difficult to analyze the ligand shell. In contrast to larger nanoparticles, ultrasmall nanoparticles cause only a moderate distortion of the NMR signal, making NMR spectroscopy a qualitative as well as a quantitative probe to assess the nature of the ligand shell. The application of isotope-labelled ligands and of two-dimensional NMR techniques can give deeper insight into ligand-nanoparticle interactions. Applications of one- and two-dimensional NMR spectroscopy to analyze ultrasmall nanoparticles are presented with suitable examples, including a critical discussion of the limitations of NMR spectroscopy on nanoparticles.
超小纳米颗粒的直径在1至3纳米之间,处于纳米颗粒与大分子的边界。通常,它们的核心由金属组成,外壳是带有硫或磷作为结合原子的封端配体。虽然可以通过电子显微镜、电子和粉末衍射以及对原子级尖锐簇的单晶结构分析来探测核心结构,但分析配体壳层则更加困难。与较大的纳米颗粒相比,超小纳米颗粒只会使核磁共振信号产生适度的畸变,这使得核磁共振光谱法成为评估配体壳层性质的定性和定量探针。应用同位素标记的配体和二维核磁共振技术可以更深入地了解配体与纳米颗粒之间的相互作用。本文通过合适的示例介绍了一维和二维核磁共振光谱法在分析超小纳米颗粒方面的应用,包括对核磁共振光谱法在纳米颗粒上局限性的批判性讨论。
Acc Chem Res. 2023-12-5
J Phys Chem B. 2021-6-3
J Phys Chem B. 2021-1-14
ACS Nanosci Au. 2025-7-18
J Am Chem Soc. 2025-6-25
ACS Nanosci Au. 2023-11-8
Acc Chem Res. 2023-12-5
Sci Technol Adv Mater. 2023-6-21
ACS Nanosci Au. 2022-8-9
Commun Chem. 2021-3-4