文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

溶液态核磁共振波谱法分析超小金属纳米颗粒配体壳层的可能性与局限性

Possibilities and limitations of solution-state NMR spectroscopy to analyze the ligand shell of ultrasmall metal nanoparticles.

作者信息

Wolff Natalie, Beuck Christine, Schaller Torsten, Epple Matthias

机构信息

Inorganic Chemistry, Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen 45117 Essen Germany

Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen 45117 Essen Germany.

出版信息

Nanoscale Adv. 2024 May 31;6(13):3285-3298. doi: 10.1039/d4na00139g. eCollection 2024 Jun 25.


DOI:10.1039/d4na00139g
PMID:38933863
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11197423/
Abstract

Ultrasmall nanoparticles have a diameter between 1 and 3 nm at the border between nanoparticles and large molecules. Usually, their core consists of a metal, and the shell of a capping ligand with sulfur or phosphorus as binding atoms. While the core structure can be probed by electron microscopy, electron and powder diffraction, and single-crystal structure analysis for atom-sharp clusters, it is more difficult to analyze the ligand shell. In contrast to larger nanoparticles, ultrasmall nanoparticles cause only a moderate distortion of the NMR signal, making NMR spectroscopy a qualitative as well as a quantitative probe to assess the nature of the ligand shell. The application of isotope-labelled ligands and of two-dimensional NMR techniques can give deeper insight into ligand-nanoparticle interactions. Applications of one- and two-dimensional NMR spectroscopy to analyze ultrasmall nanoparticles are presented with suitable examples, including a critical discussion of the limitations of NMR spectroscopy on nanoparticles.

摘要

超小纳米颗粒的直径在1至3纳米之间,处于纳米颗粒与大分子的边界。通常,它们的核心由金属组成,外壳是带有硫或磷作为结合原子的封端配体。虽然可以通过电子显微镜、电子和粉末衍射以及对原子级尖锐簇的单晶结构分析来探测核心结构,但分析配体壳层则更加困难。与较大的纳米颗粒相比,超小纳米颗粒只会使核磁共振信号产生适度的畸变,这使得核磁共振光谱法成为评估配体壳层性质的定性和定量探针。应用同位素标记的配体和二维核磁共振技术可以更深入地了解配体与纳米颗粒之间的相互作用。本文通过合适的示例介绍了一维和二维核磁共振光谱法在分析超小纳米颗粒方面的应用,包括对核磁共振光谱法在纳米颗粒上局限性的批判性讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27f4/11197423/882841b6b29e/d4na00139g-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27f4/11197423/5fee6f534223/d4na00139g-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27f4/11197423/b6d22b0dd034/d4na00139g-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27f4/11197423/f451f4a400fe/d4na00139g-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27f4/11197423/f982813c926d/d4na00139g-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27f4/11197423/8c30232ee907/d4na00139g-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27f4/11197423/1987c8da6a22/d4na00139g-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27f4/11197423/882841b6b29e/d4na00139g-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27f4/11197423/5fee6f534223/d4na00139g-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27f4/11197423/b6d22b0dd034/d4na00139g-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27f4/11197423/f451f4a400fe/d4na00139g-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27f4/11197423/f982813c926d/d4na00139g-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27f4/11197423/8c30232ee907/d4na00139g-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27f4/11197423/1987c8da6a22/d4na00139g-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27f4/11197423/882841b6b29e/d4na00139g-p1.jpg

相似文献

[1]
Possibilities and limitations of solution-state NMR spectroscopy to analyze the ligand shell of ultrasmall metal nanoparticles.

Nanoscale Adv. 2024-5-31

[2]
The Why and How of Ultrasmall Nanoparticles.

Acc Chem Res. 2023-12-5

[3]
Metal-Ligand Interface and Internal Structure of Ultrasmall Silver Nanoparticles (2 nm).

J Phys Chem B. 2021-6-3

[4]
Conversion of Ultrasmall Glutathione-Coated Silver Nanoparticles during Dispersion in Water into Ultrasmall Silver Sulfide Nanoparticles.

Nanomaterials (Basel). 2024-9-5

[5]
Water-Based Synthesis of Ultrasmall Nanoparticles of Platinum Group Metal Oxides (1.8 nm).

Inorg Chem. 2022-3-28

[6]
Ultrastructure and Surface Composition of Glutathione-Terminated Ultrasmall Silver, Gold, Platinum, and Alloyed Silver-Platinum Nanoparticles (2 nm).

Inorg Chem. 2023-10-23

[7]
Nuclear and Electron Magnetic Resonance Spectroscopies of Atomically Precise Gold Nanoclusters.

Acc Chem Res. 2019-1-15

[8]
Click Chemistry on the Surface of Ultrasmall Gold Nanoparticles (2 nm) for Covalent Ligand Attachment Followed by NMR Spectroscopy.

Langmuir. 2019-5-6

[9]
New Tools to Probe the Protein Surface: Ultrasmall Gold Nanoparticles Carry Amino Acid Binders.

J Phys Chem B. 2021-1-14

[10]
Solution NMR Spectroscopy with Isotope-Labeled Cysteine (C and N) Reveals the Surface Structure of l-Cysteine-Coated Ultrasmall Gold Nanoparticles (1.8 nm).

Langmuir. 2019-1-22

引用本文的文献

[1]
Using Electrochemistry to Benchmark, Understand, and Develop Noble Metal Nanoparticle Syntheses.

ACS Nanosci Au. 2025-7-18

[2]
A Modular Solid Phase Synthesis Approach for Glycocalix[4]Arene Derivatives and Their Multivalent Presentation on Ultrasmall Gold Nanoparticles.

Chemistry. 2025-7-17

[3]
Simple Strategies to Quantify and Control Polymer Threading into Micropores.

J Am Chem Soc. 2025-6-25

[4]
Ultrasmall Gold Nanoparticles (2 nm) Decorated with a High Density of Photochemically Switchable Ligands.

Chemistry. 2025-6-26

[5]
On-Demand Sintering of Gold Nanoparticles via Controlled Removal of o-Nitrobenzyl Thiol Ligands Under Record-Low Power for Conductive Patterns.

Adv Sci (Weinh). 2025-3

[6]
Conversion of Ultrasmall Glutathione-Coated Silver Nanoparticles during Dispersion in Water into Ultrasmall Silver Sulfide Nanoparticles.

Nanomaterials (Basel). 2024-9-5

[7]
Increased Cytotoxicity of Bimetallic Ultrasmall Silver-Platinum Nanoparticles (2 nm) on Cells and Bacteria in Comparison to Silver Nanoparticles of the Same Size.

Materials (Basel). 2024-7-26

本文引用的文献

[1]
The Molecular Footprint of Peptides on the Surface of Ultrasmall Gold Nanoparticles (2 nm) Is Governed by Steric Demand.

J Phys Chem B. 2024-5-2

[2]
Modulation of Gold Nanoparticle Ligand Structure-Dynamic Relationships Probed Using Solution NMR.

ACS Nanosci Au. 2023-11-8

[3]
The Why and How of Ultrasmall Nanoparticles.

Acc Chem Res. 2023-12-5

[4]
Ultrastructure and Surface Composition of Glutathione-Terminated Ultrasmall Silver, Gold, Platinum, and Alloyed Silver-Platinum Nanoparticles (2 nm).

Inorg Chem. 2023-10-23

[5]
Metal nanoclusters: from fundamental aspects to electronic properties and optical applications.

Sci Technol Adv Mater. 2023-6-21

[6]
Guiding the High-Yield Synthesis of NHC-Ligated Gold Nanoclusters by F NMR Spectroscopy.

ACS Nanosci Au. 2022-8-9

[7]
Open questions on the transition between nanoscale and bulk properties of metals.

Commun Chem. 2021-3-4

[8]
Silencing of proinflammatory NF-κB and inhibition of herpes simplex virus (HSV) replication by ultrasmall gold nanoparticles (2 nm) conjugated with small-interfering RNA.

Nanoscale Adv. 2022-9-5

[9]
The Yin and Yang of the protein corona on the delivery journey of nanoparticles.

Nano Res. 2023

[10]
An SAXS investigation of the formation of silver nanoparticles and bimetallic silver-gold nanoparticles in controlled wet-chemical reduction synthesis.

Nanoscale Adv. 2019-11-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索