Suppr超能文献

2020.1∼2020.2 重庆 2019 年新型冠状病毒肺炎的时空聚集性分析。

Temporal and Spatial Cluster Analysis of 2019 Novel Coronavirus Pneumonia in Chongqing, 2020.1∼2020.2.

机构信息

Chongqing Medical and Pharmaceutical College, Chongqing, China.

Public Administration Bureau of Chongqing High Tech Zone Management Committee, Chongqing, China.

出版信息

Comput Intell Neurosci. 2022 Sep 16;2022:8491628. doi: 10.1155/2022/8491628. eCollection 2022.

Abstract

In order to explore the spatial and temporal distribution characteristics of COVID-19 in Chongqing from January 22 to February 25, 2010, and provide a series of suggestions for scientific prevention and control of epidemic situation, we will mainly analyze the epidemic situation data of Chongqing Municipal Health Committee members and improve the descriptive analysis. Regional distribution and spatiotemporal scans were analyzed for COVID-19 outbreaks using ArcGIS10.2 and SaTScan9. 5 software. After the analysis, a total of 576 novel coronavirus pneumonia patients were confirmed in Chongqing. The incidence trend increased rapidly from January 22 to January 31, then decreased gradually, and there were no new cases until February 25. The purely spatial scanning results were consistent with spatiotemporal scanning, and a first-level accumulation area was detected by spatiotemporal scanning in the east and northeast of Chongqing from January 22 to February 10. From January 22 to February 25, 2020,COVID-19 occurred in the eastern and northeast regions of Chongqing. It is recommended to strengthen the detection of cluster areas to prevent another outbreak of COVID-19 risk.

摘要

为了探索 2020 年 1 月 22 日至 2 月 25 日重庆市 COVID-19 的时空分布特征,为疫情科学防控提供系列建议,我们将主要对重庆市卫健委成员的疫情数据进行分析,采用描述性分析加以完善。利用 ArcGIS10.2 和 SaTScan9.5 软件对 COVID-19 疫情进行区域分布和时空扫描分析。分析后,重庆共确诊 576 例新型冠状病毒肺炎患者。发病趋势从 1 月 22 日至 1 月 31 日迅速增加,然后逐渐减少,直到 2 月 25 日才出现新病例。纯粹的空间扫描结果与时空扫描一致,时空扫描检测到 1 月 22 日至 2 月 10 日重庆东部和东北部的一级聚集区。2020 年 1 月 22 日至 2 月 25 日,重庆市东部和东北部地区发生了 COVID-19。建议加强对集群区域的检测,以防止 COVID-19 风险再次爆发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6321/9507712/61bc609a95d8/CIN2022-8491628.001.jpg

相似文献

1
Temporal and Spatial Cluster Analysis of 2019 Novel Coronavirus Pneumonia in Chongqing, 2020.1∼2020.2.
Comput Intell Neurosci. 2022 Sep 16;2022:8491628. doi: 10.1155/2022/8491628. eCollection 2022.
2
Spatio-temporal distribution characteristics of COVID-19 in China: a city-level modeling study.
BMC Infect Dis. 2021 Aug 14;21(1):816. doi: 10.1186/s12879-021-06515-8.
3
An analysis of spatiotemporal pattern for COIVD-19 in China based on space-time cube.
J Med Virol. 2020 Sep;92(9):1587-1595. doi: 10.1002/jmv.25834. Epub 2020 Apr 25.
4
Spatio-Temporal Patterns of the 2019-nCoV Epidemic at the County Level in Hubei Province, China.
Int J Environ Res Public Health. 2020 Apr 8;17(7):2563. doi: 10.3390/ijerph17072563.
6
Epidemiology of COVID-19 in Jiangxi, China: A retrospective observational study.
Medicine (Baltimore). 2021 Oct 29;100(43):e27685. doi: 10.1097/MD.0000000000027685.
7
Epidemiological Characteristics and Spatiotemporal Analysis of Mumps from 2004 to 2018 in Chongqing, China.
Int J Environ Res Public Health. 2019 Aug 22;16(17):3052. doi: 10.3390/ijerph16173052.
8
Spatiotemporal cluster analysis of COVID-19 and its relationship with environmental factors at the city level in mainland China.
Environ Sci Pollut Res Int. 2022 Feb;29(9):13386-13395. doi: 10.1007/s11356-021-16600-9. Epub 2021 Sep 30.
9
Spatial-temporal analysis of tuberculosis in Chongqing, China 2011-2018.
BMC Infect Dis. 2020 Jul 22;20(1):531. doi: 10.1186/s12879-020-05249-3.

引用本文的文献

1
Spatiotemporal dynamics and policy impact on farmer suicides in Maharashtra, India.
Sci Rep. 2025 Jun 1;15(1):19210. doi: 10.1038/s41598-025-03335-7.

本文引用的文献

1
Risk clusters of COVID-19 transmission in northeastern Brazil: prospective space-time modelling.
Epidemiol Infect. 2020 Aug 24;148:e188. doi: 10.1017/S0950268820001843.
2
3
Epidemiology of Coronavirus Disease in Gansu Province, China, 2020.
Emerg Infect Dis. 2020 Jun;26(6):1257-1265. doi: 10.3201/eid2606.200251. Epub 2020 Jun 17.
4
Clinical Characteristics of Coronavirus Disease 2019 in China.
N Engl J Med. 2020 Apr 30;382(18):1708-1720. doi: 10.1056/NEJMoa2002032. Epub 2020 Feb 28.
5
Pathogenicity and transmissibility of 2019-nCoV-A quick overview and comparison with other emerging viruses.
Microbes Infect. 2020 Mar;22(2):69-71. doi: 10.1016/j.micinf.2020.01.004. Epub 2020 Feb 4.
6
Novel coronavirus infection during the 2019-2020 epidemic: preparing intensive care units-the experience in Sichuan Province, China.
Intensive Care Med. 2020 Feb;46(2):357-360. doi: 10.1007/s00134-020-05954-2. Epub 2020 Feb 5.
7
Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia.
N Engl J Med. 2020 Mar 26;382(13):1199-1207. doi: 10.1056/NEJMoa2001316. Epub 2020 Jan 29.
10
[Epidemiologic features and space-time clustering analysis of human schistosomiasis in Hubei Province from 2015 to 2016].
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi. 2018 Aug 30;30(4):404-409. doi: 10.16250/j.32.1374.2017195.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验