MaIAGE, INRAE, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
J Math Biol. 2022 Sep 26;85(4):40. doi: 10.1007/s00285-022-01806-3.
The estimation from available data of parameters governing epidemics is a major challenge. In addition to usual issues (data often incomplete and noisy), epidemics of the same nature may be observed in several places or over different periods. The resulting possible inter-epidemic variability is rarely explicitly considered. Here, we propose to tackle multiple epidemics through a unique model incorporating a stochastic representation for each epidemic and to jointly estimate its parameters from noisy and partial observations. By building on a previous work for prevalence data, a Gaussian state-space model is extended to a model with mixed effects on the parameters describing simultaneously several epidemics and their observation process. An appropriate inference method is developed, by coupling the SAEM algorithm with Kalman-type filtering. Moreover, we consider here incidence data, which requires to develop a new version of the filtering algorithm. Its performances are investigated on SIR simulated epidemics for prevalence and incidence data. Our method outperforms an inference method separately processing each dataset. An application to SEIR influenza outbreaks in France over several years using incidence data is also carried out. Parameter estimations highlight a non-negligible variability between influenza seasons, both in transmission and case reporting. The main contribution of our study is to rigorously and explicitly account for the inter-epidemic variability between multiple outbreaks, both from the viewpoint of modeling and inference with a parsimonious statistical model.
对控制流行病的参数进行估计是一项重大挑战。除了常见的问题(数据通常不完整且存在噪声)之外,还可能在多个地方或不同时期观察到同一性质的流行病。由此产生的可能的流行病间变异性很少被明确考虑。在这里,我们通过一个独特的模型来处理多个流行病,该模型包含每个流行病的随机表示,并从嘈杂和部分观察中联合估计其参数。基于以前针对流行率数据的工作,我们将高斯状态空间模型扩展到同时描述多个流行病及其观测过程的参数上具有混合效应的模型。通过将 SAEM 算法与卡尔曼型滤波相结合,开发了一种合适的推理方法。此外,我们还考虑了发病率数据,这需要开发一种新的滤波算法版本。在流行率和发病率数据的 SIR 模拟流行病上对其性能进行了研究。我们的方法优于分别处理每个数据集的推理方法。还使用发病率数据对法国多年来的 SEIR 流感爆发进行了应用。参数估计强调了流感季节之间在传播和病例报告方面存在不可忽略的变异性。我们研究的主要贡献是从建模和推理的角度出发,严格而明确地考虑了多个爆发之间的流行病间变异性,同时使用一个简洁的统计模型。