Suppr超能文献

一种用于随机房室流行病模型实时校准的似然方法。

A Likelihood Approach for Real-Time Calibration of Stochastic Compartmental Epidemic Models.

作者信息

Zimmer Christoph, Yaesoubi Reza, Cohen Ted

机构信息

Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America.

Health Policy and Management, Yale School of Public Health, New Haven, Connecticut, United States of America.

出版信息

PLoS Comput Biol. 2017 Jan 17;13(1):e1005257. doi: 10.1371/journal.pcbi.1005257. eCollection 2017 Jan.

Abstract

Stochastic transmission dynamic models are especially useful for studying the early emergence of novel pathogens given the importance of chance events when the number of infectious individuals is small. However, methods for parameter estimation and prediction for these types of stochastic models remain limited. In this manuscript, we describe a calibration and prediction framework for stochastic compartmental transmission models of epidemics. The proposed method, Multiple Shooting for Stochastic systems (MSS), applies a linear noise approximation to describe the size of the fluctuations, and uses each new surveillance observation to update the belief about the true epidemic state. Using simulated outbreaks of a novel viral pathogen, we evaluate the accuracy of MSS for real-time parameter estimation and prediction during epidemics. We assume that weekly counts for the number of new diagnosed cases are available and serve as an imperfect proxy of incidence. We show that MSS produces accurate estimates of key epidemic parameters (i.e. mean duration of infectiousness, R0, and Reff) and can provide an accurate estimate of the unobserved number of infectious individuals during the course of an epidemic. MSS also allows for accurate prediction of the number and timing of future hospitalizations and the overall attack rate. We compare the performance of MSS to three state-of-the-art benchmark methods: 1) a likelihood approximation with an assumption of independent Poisson observations; 2) a particle filtering method; and 3) an ensemble Kalman filter method. We find that MSS significantly outperforms each of these three benchmark methods in the majority of epidemic scenarios tested. In summary, MSS is a promising method that may improve on current approaches for calibration and prediction using stochastic models of epidemics.

摘要

鉴于在感染个体数量较少时随机事件的重要性,随机传播动力学模型对于研究新型病原体的早期出现尤为有用。然而,这类随机模型的参数估计和预测方法仍然有限。在本论文中,我们描述了一种用于流行病随机 compartmental 传播模型的校准和预测框架。所提出的方法,即随机系统多重打靶法(MSS),应用线性噪声近似来描述波动的大小,并利用每次新的监测观察来更新对真实流行状态的信念。通过模拟一种新型病毒病原体的爆发,我们评估了 MSS 在流行病期间进行实时参数估计和预测的准确性。我们假设可获得每周新诊断病例数,并将其作为发病率的不完美代理。我们表明,MSS 能准确估计关键流行参数(即平均感染持续时间、R0 和有效繁殖数),并能准确估计流行病过程中未观察到的感染个体数量。MSS 还能准确预测未来住院的数量和时间以及总体发病率。我们将 MSS 的性能与三种最先进的基准方法进行比较:1)基于独立泊松观测假设的似然近似;2)粒子滤波方法;3)集合卡尔曼滤波方法。我们发现,在大多数测试的流行情景中,MSS 显著优于这三种基准方法中的每一种。总之,MSS 是一种有前途的方法,可能会改进当前使用流行病随机模型进行校准和预测的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e90/5240920/ce66da07d3ef/pcbi.1005257.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验