Institut Pasteur, Unité de Génétique Fonctionnelle des Maladies Infectieuses, UMR 2000 CNRS, Paris, France; Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
INRIA, Bordeaux Research Center, France.
Math Biosci. 2021 May;335:108583. doi: 10.1016/j.mbs.2021.108583. Epub 2021 Mar 10.
We present a new Bayesian inference method for compartmental models that takes into account the intrinsic stochasticity of the process. We show how to formulate a SIR-type Markov jump process as the solution of a stochastic differential equation with respect to a Poisson Random Measure (PRM), and how to simulate the process trajectory deterministically from a parameter value and a PRM realization. This forms the basis of our Data Augmented MCMC, which consists of augmenting parameter space with the unobserved PRM value. The resulting simple Metropolis-Hastings sampler acts as an efficient simulation-based inference method, that can easily be transferred from model to model. Compared with a recent Data Augmentation method based on Gibbs sampling of individual infection histories, PRM-augmented MCMC scales much better with epidemic size and is far more flexible. It is also found to be competitive with Particle MCMC for moderate epidemics when using approximate simulations. PRM-augmented MCMC also yields a posteriori estimates of the PRM, that represent process stochasticity, and which can be used to validate the model. A pattern of deviation from the PRM prior distribution will indicate that the model underfits the data and help to understand the cause. We illustrate this by fitting a non-seasonal model to some simulated seasonal case count data. Applied to the Zika epidemic of 2013 in French Polynesia, our approach shows that a simple SEIR model cannot correctly reproduce both the initial sharp increase in the number of cases as well as the final proportion of seropositive. PRM augmentation thus provides a coherent story for Stochastic Epidemic Model inference, where explicitly inferring process stochasticity helps with model validation.
我们提出了一种新的贝叶斯推断方法,用于考虑过程固有随机性的房室模型。我们展示了如何将 SIR 型马尔可夫跳跃过程表述为关于泊松随机测度 (PRM) 的随机微分方程的解,以及如何从参数值和 PRM 实现中确定性地模拟过程轨迹。这构成了我们的数据增强 MCMC 的基础,该方法包括用未观测到的 PRM 值扩充参数空间。由此产生的简单 Metropolis-Hastings 采样器作为一种有效的基于模拟的推断方法,可以很容易地从一个模型转移到另一个模型。与最近基于个体感染史的 Gibbs 抽样的数据分析增强方法相比,PRM 增强的 MCMC 具有更好的扩展性,并且更加灵活。当使用近似模拟时,它在中等规模的流行中也被发现与粒子 MCMC 具有竞争力。PRM 增强的 MCMC 还产生了 PRM 的后验估计值,这些估计值表示过程的随机性,并且可以用于验证模型。偏离 PRM 先验分布的模式将表明模型与数据拟合不足,并有助于了解原因。我们通过将一个非季节性模型拟合到一些模拟的季节性病例计数数据来说明这一点。将我们的方法应用于 2013 年法属波利尼西亚的 Zika 流行,表明一个简单的 SEIR 模型不能正确再现病例数量的初始急剧增加以及最终的阳性血清比例。因此,PRM 增强为随机流行模型推断提供了一个连贯的故事,其中明确推断过程随机性有助于模型验证。