Esteras Dorye L, Rybakov Andrey, Ruiz Alberto M, Baldoví José J
Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain.
Nano Lett. 2022 Nov 9;22(21):8771-8778. doi: 10.1021/acs.nanolett.2c02863. Epub 2022 Sep 26.
The recent isolation of two-dimensional (2D) magnets offers tantalizing opportunities for spintronics and magnonics at the limit of miniaturization. One of the key advantages of atomically thin materials is their outstanding deformation capacity, which provides an exciting avenue to control their properties by strain engineering. Herein, we investigate the magnetic properties, magnon dispersion, and spin dynamics of the air-stable 2D magnetic semiconductor CrSBr ( = 146 K) under mechanical strain using first-principles calculations. Our results provide a deep microscopic analysis of the competing interactions that stabilize the long-range ferromagnetic order in the monolayer. We showcase that the magnon dynamics of CrSBr can be modified selectively along the two main crystallographic directions as a function of applied strain, probing the potential of this quasi-1D electronic system for magnon straintronics applications. Moreover, we predict a strain-driven enhancement of by ∼30%, allowing the propagation of spin waves at higher temperatures.
最近二维(2D)磁体的分离为自旋电子学和磁子学在小型化极限方面提供了诱人的机遇。原子级薄材料的关键优势之一是其出色的变形能力,这为通过应变工程控制其特性提供了一条令人兴奋的途径。在此,我们使用第一性原理计算研究了空气稳定的二维磁性半导体CrSBr(居里温度 = 146 K)在机械应变下的磁性、磁振子色散和自旋动力学。我们的结果对稳定单层中长程铁磁序的竞争相互作用进行了深入的微观分析。我们展示了CrSBr的磁振子动力学可以根据施加的应变沿着两个主要晶体学方向选择性地改变,探索了这个准一维电子系统在磁振子应变电子学应用中的潜力。此外,我们预测应变可使居里温度提高约30%,从而使自旋波能够在更高温度下传播。