Rizzo Daniel J, McLeod Alexander S, Carnahan Caitlin, Telford Evan J, Dismukes Avalon H, Wiscons Ren A, Dong Yinan, Nuckolls Colin, Dean Cory R, Pasupathy Abhay N, Roy Xavier, Xiao Di, Basov D N
Department of Physics, Columbia University, New York, NY, 10027, USA.
Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
Adv Mater. 2022 Jul;34(27):e2201000. doi: 10.1002/adma.202201000. Epub 2022 May 31.
2D materials can host long-range magnetic order in the presence of underlying magnetic anisotropy. The ability to realize the full potential of 2D magnets necessitates systematic investigation of the role of individual atomic layers and nanoscale inhomogeneity (i.e., strain) on the emergence of stable magnetic phases. Here, spatially dependent magnetism in few-layer CrSBr is revealed using magnetic force microscopy (MFM) and Monte Carlo-based simulations. Nanoscale visualization of the magnetic sheet susceptibility is extracted from MFM data and force-distance curves, revealing a characteristic onset of both intra- and interlayer magnetic correlations as a function of temperature and layer-thickness. These results demonstrate that the presence of a single uncompensated layer in odd-layer terraces significantly reduces the stability of the low-temperature antiferromagnetic (AFM) phase and gives rise to multiple coexisting magnetic ground states at temperatures close to the bulk Néel temperature (T ). Furthermore, the AFM phase can be reliably suppressed using modest fields (≈16 mT) from the MFM probe, behaving as a nanoscale magnetic switch. This prototypical study of few-layer CrSBr demonstrates the critical role of layer parity on field-tunable 2D magnetism and validates MFM for use in nanomagnetometry of 2D materials (despite the ubiquitous absence of bulk zero-field magnetism in magnetized sheets).
在存在潜在磁各向异性的情况下,二维材料可以呈现长程磁有序。要充分发挥二维磁体的潜力,需要系统研究单个原子层和纳米尺度不均匀性(即应变)对稳定磁相出现的作用。在此,利用磁力显微镜(MFM)和基于蒙特卡洛的模拟揭示了少层CrSBr中的空间相关磁性。从MFM数据和力-距离曲线中提取了磁片磁化率的纳米尺度可视化结果,揭示了层内和层间磁相关性随温度和层厚度变化的特征起始点。这些结果表明,奇数层台地中单个未补偿层的存在显著降低了低温反铁磁(AFM)相的稳定性,并在接近体奈尔温度(T)的温度下产生了多个共存的磁性基态。此外,使用MFM探针施加适度的磁场(≈16 mT)可以可靠地抑制AFM相,其表现为一个纳米尺度的磁开关。这项关于少层CrSBr的典型研究证明了层奇偶性在磁场可调二维磁性中的关键作用,并验证了MFM在二维材料纳米磁测量中的应用(尽管在磁化片中普遍不存在体零场磁性)。