Department of Chemistry, Columbia University, New York, NY, USA.
Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
Nature. 2022 Sep;609(7926):282-286. doi: 10.1038/s41586-022-05024-1. Epub 2022 Sep 7.
The recent discoveries of two-dimensional (2D) magnets and their stacking into van der Waals structures have expanded the horizon of 2D phenomena. One exciting application is to exploit coherent magnons as energy-efficient information carriers in spintronics and magnonics or as interconnects in hybrid quantum systems. A particular opportunity arises when a 2D magnet is also a semiconductor, as reported recently for CrSBr (refs. ) and NiPS (refs. ) that feature both tightly bound excitons with a large oscillator strength and potentially long-lived coherent magnons owing to the bandgap and spatial confinement. Although magnons and excitons are energetically mismatched by orders of magnitude, their coupling can lead to efficient optical access to spin information. Here we report strong magnon-exciton coupling in the 2D A-type antiferromagnetic semiconductor CrSBr. Coherent magnons launched by above-gap excitation modulate the exciton energies. Time-resolved exciton sensing reveals magnons that can coherently travel beyond seven micrometres, with a coherence time of above five nanoseconds. We observe these exciton-coupled coherent magnons in both even and odd numbers of layers, with and without compensated magnetization, down to the bilayer limit. Given the versatility of van der Waals heterostructures, these coherent 2D magnons may be a basis for optically accessible spintronics, magnonics and quantum interconnects.
最近,二维(2D)磁体及其堆叠成范德瓦尔斯结构的发现扩展了 2D 现象的视野。一个令人兴奋的应用是利用相干磁子作为自旋电子学和磁子学中节能的信息载体,或者作为混合量子系统中的互连。当 2D 磁体也是半导体时,就会出现一个特殊的机会,最近报道的 CrSBr(参考文献)和 NiPS(参考文献)就是如此,它们都具有紧束缚激子,其振子强度大,并且由于带隙和空间限制,相干磁子可能具有较长的寿命。尽管磁子和激子在能量上相差几个数量级,但它们的耦合可以实现对自旋信息的高效光学访问。在这里,我们报告了 2D A 型反铁磁半导体 CrSBr 中强烈的磁子-激子耦合。通过带隙以上的激发产生的相干磁子可以调制激子能量。时间分辨的激子传感揭示了可以在超过七个微米的距离上相干传播的磁子,其相干时间超过五个纳秒。我们在偶数和奇数层中观察到这些与激子耦合的相干磁子,无论是有补偿磁化还是没有补偿磁化,直至双层极限。考虑到范德瓦尔斯异质结构的多功能性,这些相干的 2D 磁子可能是光学可访问的自旋电子学、磁子学和量子互连的基础。