Suppr超能文献

运用组合机器学习模型预测人工湖冬季水变暖对浮游动物及其环境的影响。

Predicting the effects of winter water warming in artificial lakes on zooplankton and its environment using combined machine learning models.

机构信息

Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Słoneczna 54, 10-710, Olsztyn, Poland.

Faculty of Geoengineering, University of Warmia and Mazury, Oczapowskiego 5, 10-719, Olsztyn, Poland.

出版信息

Sci Rep. 2022 Sep 27;12(1):16145. doi: 10.1038/s41598-022-20604-x.

Abstract

This work deals with the consequences of climate warming on aquatic ecosystems. The study determined the effects of increased water temperatures in artificial lakes during winter on predicting changes in the biomass of zooplankton taxa and their environment. We applied an innovative approach to investigate the effects of winter warming on zooplankton and physico-chemical factors. We used a modelling scheme combining hierarchical clustering, eXtreme Gradient Boosting (XGBoost) and SHapley Additive exPlanations (SHAP) algorithms. Under the influence of increased water temperatures in winter, weight- and frequency-dominant Crustacea taxa such as Daphnia cucullata, Cyclops vicinus, Cryptocyclops bicolor, copepodites and nauplii, and the Rotifera: Polyarthra longiremis, Trichocerca pusilla, Keratella quadrata, Asplanchna priodonta and Synchaeta spp. tend to decrease their biomass. Under the same conditions, Rotifera: Lecane spp., Monommata maculata, Testudinella patina, Notholca squamula, Colurella colurus, Trichocerca intermedia and the protozoan species Centropyxis acuelata and Arcella discoides with lower size and abundance responded with an increase in biomass. Decreases in chlorophyll a, suspended solids and total nitrogen were predicted due to winter warming. Machine learning ensemble models used in innovative ways can contribute to the research utility of studies on the response of ecological units to environmental change.

摘要

本研究探讨了气候变暖对水生生态系统的影响。该研究确定了冬季人工湖中水温升高对预测浮游动物分类群及其环境生物量变化的影响。我们采用了一种创新的方法来研究冬季变暖对浮游动物和理化因子的影响。我们使用了一种结合层次聚类、极端梯度提升(XGBoost)和 SHapley 加性解释(SHAP)算法的建模方案。在冬季水温升高的影响下,重量和频率占优势的甲壳类生物如 Daphnia cucullata、Cyclops vicinus、Cryptocyclops bicolor、桡足类幼体和无节幼体,以及轮虫:Polyarthra longiremis、Trichocerca pusilla、Keratella quadrata、Asplanchna priodonta 和 Synchaeta spp. 的生物量往往会减少。在相同条件下,桡足类:Lecane spp.、Monommata maculata、Testudinella patina、Notholca squamula、Colurella colurus、Trichocerca intermedia 和原生动物 Centropyxis acuelata 和 Arcella discoides 等体型较小、丰度较低的物种的生物量会增加。由于冬季变暖,预测到叶绿素 a、悬浮物和总氮的减少。创新使用的机器学习集成模型可以为研究生态单位对环境变化的响应提供研究工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e728/9515112/32d156c349d0/41598_2022_20604_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验