Lee Kwang-Sig, Kim Eun Sun
AI Center, Korea University Anam Hospital, Seoul 02841, Korea.
Department of Gastroenterology, Korea University Anam Hospital, Seoul 02841, Korea.
Diagnostics (Basel). 2022 Nov 9;12(11):2740. doi: 10.3390/diagnostics12112740.
This study reviews the recent progress of explainable artificial intelligence for the early diagnosis of gastrointestinal disease (GID). The source of data was eight original studies in PubMed. The search terms were "gastrointestinal" (title) together with "random forest" or "explainable artificial intelligence" (abstract). The eligibility criteria were the dependent variable of GID or a strongly associated disease, the intervention(s) of artificial intelligence, the outcome(s) of accuracy and/or the area under the receiver operating characteristic curve (AUC), the outcome(s) of variable importance and/or the Shapley additive explanations (SHAP), a publication year of 2020 or later, and the publication language of English. The ranges of performance measures were reported to be 0.70-0.98 for accuracy, 0.04-0.25 for sensitivity, and 0.54-0.94 for the AUC. The following factors were discovered to be top-10 predictors of gastrointestinal bleeding in the intensive care unit: mean arterial pressure (max), bicarbonate (min), creatinine (max), PMN, heart rate (mean), Glasgow Coma Scale, age, respiratory rate (mean), prothrombin time (max) and aminotransferase aspartate (max). In a similar vein, the following variables were found to be top-10 predictors for the intake of almond, avocado, broccoli, walnut, whole-grain barley, and/or whole-grain oat: undefined, spp., undefined, spp., subsp. , , spp., spp., Lachnospiraceae group undefined, and spp. Explainable artificial intelligence provides an effective, non-invasive decision support system for the early diagnosis of GID.
本研究回顾了可解释人工智能在胃肠道疾病(GID)早期诊断方面的最新进展。数据来源为PubMed上的八项原创研究。检索词为“胃肠道”(标题)以及“随机森林”或“可解释人工智能”(摘要)。纳入标准为GID或密切相关疾病的因变量、人工智能干预措施、准确性和/或受试者工作特征曲线下面积(AUC)结果、变量重要性和/或夏普利值附加解释(SHAP)结果、2020年或之后的发表年份以及英文发表语言。据报道,性能指标范围为准确性0.70 - 0.98、敏感性0.04 - 0.25以及AUC 0.54 - 0.94。以下因素被发现是重症监护病房胃肠道出血的前10大预测因素:平均动脉压(最大值)、碳酸氢盐(最小值)、肌酐(最大值)、中性粒细胞、心率(平均值)、格拉斯哥昏迷量表、年龄、呼吸频率(平均值)、凝血酶原时间(最大值)和天冬氨酸转氨酶(最大值)。同样,以下变量被发现是杏仁、鳄梨、西兰花、核桃、全麦大麦和/或全麦燕麦摄入量的前10大预测因素:未定义、 spp.、未定义、 spp.、亚种 、 、 spp.、 spp.、毛螺菌科未定义组和 spp.。可解释人工智能为GID的早期诊断提供了一种有效、非侵入性的决策支持系统。