Corning Incorporated, Corning, NY, USA.
Merck & Co., Inc., Kenilworth, NJ, USA.
Sci Rep. 2022 Sep 27;12(1):16076. doi: 10.1038/s41598-022-18284-8.
How to mitigate the spread of infectious diseases like COVID-19 in indoor environments remains an important research question. In this study, we propose an agent-based modeling framework to evaluate facility usage policies that aim to lower the probability of outbreaks. The proposed framework is individual-based, spatially-resolved with time resolution of up to 1 s, and takes into detailed account specific floor layouts, occupant schedules and movement. It enables decision makers to compute realistic contact networks and generate risk profiles of their facilities without relying on wearable devices, smartphone tagging or surveillance cameras. Our demonstrative modeling results indicate that not all facility occupants present the same risk of starting an outbreak, where the driver of outbreaks varies with facility layouts as well as individual occupant schedules. Therefore, generic mitigation strategies applied across all facilities should be considered inferior to tailored policies that take into account individual characteristics of the facilities of interest. The proposed modeling framework, implemented in Python and now available to the public in an open-source platform, enables such strategy evaluation.
如何在室内环境中减轻 COVID-19 等传染病的传播仍然是一个重要的研究问题。在这项研究中,我们提出了一个基于代理的建模框架,以评估旨在降低爆发概率的设施使用政策。所提出的框架是基于个体的,具有空间分辨率,时间分辨率高达 1 秒,并详细考虑了特定的楼层布局、人员时间表和移动情况。它使决策者能够计算出实际的接触网络,并生成其设施的风险概况,而无需依赖可穿戴设备、智能手机标记或监控摄像头。我们的示范建模结果表明,并非所有设施使用者都有相同的引发疫情的风险,疫情的驱动因素因设施布局以及个别使用者时间表而异。因此,适用于所有设施的通用缓解策略应被认为不如针对相关设施个体特征制定的定制策略。该建模框架是用 Python 实现的,现在已经在一个开源平台上向公众开放,使这种策略评估成为可能。