Suppr超能文献

分子通路通过从细胞系到肿瘤和患者来源异种移植物的迁移学习来增强药物反应预测。

Molecular pathways enhance drug response prediction using transfer learning from cell lines to tumors and patient-derived xenografts.

机构信息

Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.

Center for Translational Cancer Research, Texas A&M University, Houston, TX, 77030, USA.

出版信息

Sci Rep. 2022 Sep 27;12(1):16109. doi: 10.1038/s41598-022-20646-1.

Abstract

Computational models have been successful in predicting drug sensitivity in cancer cell line data, creating an opportunity to guide precision medicine. However, translating these models to tumors remains challenging. We propose a new transfer learning workflow that transfers drug sensitivity predicting models from large-scale cancer cell lines to both tumors and patient derived xenografts based on molecular pathways derived from genomic features. We further compute feature importance to identify pathways most important to drug response prediction. We obtained good performance on tumors (AUROC = 0.77) and patient derived xenografts from triple negative breast cancers (RMSE = 0.11). Using feature importance, we highlight the association between ER-Golgi trafficking pathway in everolimus sensitivity within breast cancer patients and the role of class II histone deacetylases and interlukine-12 in response to drugs for triple-negative breast cancer. Pathway information support transfer of drug response prediction models from cell lines to tumors and can provide biological interpretation underlying the predictions, serving as a steppingstone towards usage in clinical setting.

摘要

计算模型已成功用于预测癌细胞系数据中的药物敏感性,为精准医疗提供了机会。然而,将这些模型转化为肿瘤仍然具有挑战性。我们提出了一种新的迁移学习工作流程,该流程基于源自基因组特征的分子途径,将药物敏感性预测模型从大规模癌细胞系转移到肿瘤和患者来源的异种移植物。我们进一步计算特征重要性,以确定对药物反应预测最重要的途径。我们在肿瘤(AUROC=0.77)和三阴性乳腺癌患者来源的异种移植物(RMSE=0.11)上取得了良好的性能。使用特征重要性,我们突出了 ER-Golgi 贩运途径在乳腺癌患者中依维莫司敏感性中的作用,以及 Class II 组蛋白去乙酰化酶和白细胞介素-12 在三阴性乳腺癌药物反应中的作用。途径信息支持从细胞系到肿瘤的药物反应预测模型的转移,并可为预测提供生物学解释,为在临床环境中的应用奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af1/9515168/cfc73195d80a/41598_2022_20646_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验