Suppr超能文献

SynPathy:利用深度学习通过药物相关通路预测药物协同作用。

SynPathy: Predicting Drug Synergy through Drug-Associated Pathways Using Deep Learning.

作者信息

Tang Yi-Ching, Gottlieb Assaf

出版信息

Mol Cancer Res. 2022 May 4;20(5):762-769. doi: 10.1158/1541-7786.MCR-21-0735.

Abstract

UNLABELLED

Drug combination therapy has become a promising therapeutic strategy for cancer treatment. While high-throughput drug combination screening is effective for identifying synergistic drug combinations, measuring all possible combinations is impractical due to the vast space of therapeutic agents and cell lines. In this study, we propose a biologically-motivated deep learning approach to identify pathway-level features from drug and cell lines' molecular data for predicting drug synergy and quantifying the interactions in synergistic drug pairs. This method obtained an MSE of 70.6 ± 6.4, significantly surpassing previous approaches while providing potential candidate pathways to explain the prediction. We further demonstrate that drug combinations tend to be more synergistic when their top contributing pathways are closer to each other on a protein interaction network, suggesting a potential strategy for combination therapy with topologically interacting pathways. Our computational approach can thus be utilized both for prescreening of potential drug combinations and for designing new combinations based on proximity of pathways associated with drug targets and cell lines.

IMPLICATIONS

Our computational framework may be translated in the future to clinical scenarios where synergistic drugs are tailored to the patient and additionally, drug development could benefit from designing drugs that target topologically close pathways.

摘要

未标注

联合药物治疗已成为一种有前景的癌症治疗策略。虽然高通量药物联合筛选对于识别协同药物组合很有效,但由于治疗药物和细胞系的空间巨大,测量所有可能的组合是不切实际的。在本研究中,我们提出了一种基于生物学的深度学习方法,从药物和细胞系的分子数据中识别通路水平的特征,以预测药物协同作用并量化协同药物对中的相互作用。该方法获得了70.6±6.4的均方误差,显著超过了以前的方法,同时提供了解释预测结果的潜在候选通路。我们进一步证明,当它们在蛋白质相互作用网络上的主要贡献通路彼此更接近时,药物组合往往更具协同性,这为拓扑相互作用通路的联合治疗提供了一种潜在策略。因此,我们的计算方法可用于潜在药物组合的预筛选,以及基于与药物靶点和细胞系相关的通路接近性设计新的组合。

启示

我们的计算框架未来可能会转化为临床场景,即根据患者情况定制协同药物,此外,药物开发可能会受益于设计针对拓扑接近通路的药物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验