Suppr超能文献

成熟颗粒细胞增强的可塑性降低了成年小鼠海马体中新生神经元的存活率。

Enhanced plasticity of mature granule cells reduces survival of newborn neurons in the adult mouse hippocampus.

作者信息

Kleine Borgmann Felix B, Gräff Johannes, Mansuy Isabelle M, Toni Nicolas, Jessberger Sebastian

机构信息

Laboratory of Neural Plasticity, Brain Research Institute, University of Zurich, Luxembourg Centre for Systems Biomedicine, University of Luxembourg.

Brain Research Institute, Laboratory of Neuroepigenetics, University of Zurich and Swiss Federal Institute of Technology Zurich, Department of Fundamental Neuroscience, University of Lausanne.

出版信息

Matters Sel. 2016 Dec 29;2(12):201610000014. doi: 10.19185/matters.201610000014.

Abstract

Dentate granule cells are born throughout life in the mammalian hippocampus. The integration of newborn neurons into the dentate circuit is activity-dependent, and structural data characterizing synapse formation suggested that the survival of adult-born granule cells is regulated by competition for synaptic partners. Here we tested this hypothesis by using a mouse model with genetically enhanced plasticity of mature granule cells through temporally controlled expression of a nuclear inhibitor of protein phosphatase (NIPP*). Using thymidine analogues and retrovirus-mediated cell labeling, we show that synaptic integration and subsequent survival of newborn neurons is decreased in NIPP*-expressing mice, suggesting that newborn neurons compete with preexisting granule cells for stable integration. The data presented here provides experimental evidence for a long-standing hypothesis and suggest cellular competition as a key mechanism regulating the integration and survival of newborn granule cells in the adult mammalian hippocampus.

摘要

齿状颗粒细胞在哺乳动物海马体中终生生成。新生神经元融入齿状回路的过程依赖于活动,且表征突触形成的结构数据表明,成年生成的颗粒细胞的存活受对突触伙伴的竞争调节。在此,我们通过一个小鼠模型来验证这一假设,该模型通过对蛋白磷酸酶核抑制剂(NIPP*)进行时间控制表达,使成熟颗粒细胞具有遗传增强的可塑性。利用胸腺嘧啶类似物和逆转录病毒介导的细胞标记,我们发现,在表达NIPP*的小鼠中,新生神经元的突触整合及随后的存活减少,这表明新生神经元与已有的颗粒细胞竞争稳定整合。此处呈现的数据为一个长期存在的假设提供了实验证据,并表明细胞竞争是调节成年哺乳动物海马体中新生颗粒细胞整合与存活的关键机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a569/7613637/19803adc02aa/EMS146324-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验