Suppr超能文献

高表达细胞表面信号系统 Hxu 增强铜绿假单胞菌血流感染。

High-Level Expression of Cell-Surface Signaling System Hxu Enhances Pseudomonas aeruginosa Bloodstream Infection.

机构信息

State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai Universitygrid.216938.7, Tianjin, China.

Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China.

出版信息

Infect Immun. 2022 Oct 20;90(10):e0032922. doi: 10.1128/iai.00329-22. Epub 2022 Sep 28.

Abstract

Bloodstream infections (BSIs) caused by Pseudomonas aeruginosa are associated with a high mortality rate in the clinic. However, the fitness mechanisms responsible for the evolution of virulence factors that facilitate the dissemination of P. aeruginosa to the bloodstream are poorly understood. In this study, a transcriptomic analysis of the BSI-associated P. aeruginosa clinical isolates showed a high-level expression of cell-surface signaling (CSS) system Hxu. Whole-genome sequencing and comparative genomics of these isolates showed that a mutation in gene was responsible for the elevated expression of the Hxu-CSS pathway. Most importantly, deletion of the gene cluster in a laboratory strain PAO1 reduced its BSI capability while overexpression of the HxuIRA pathway promoted BSI in a murine sepsis model. We further demonstrated that multiple components in the blood plasma, including heme, hemoglobin, the heme-scavenging proteins haptoglobin, and hemopexin, as well as the iron-delivery protein transferrin, could activate the Hxu system. Together, these studies suggested that the Hxu-CSS system was an important signal transduction pathway contributing to the adaptive pathogenesis of P. aeruginosa in BSI.

摘要

血流感染(BSI)由铜绿假单胞菌引起,与临床高死亡率相关。然而,导致毒力因子进化的适应机制,促进铜绿假单胞菌传播到血液中,仍知之甚少。在这项研究中,对与 BSI 相关的铜绿假单胞菌临床分离株进行了转录组分析,结果显示细胞表面信号(CSS)系统 Hxu 表达水平较高。对这些分离株进行全基因组测序和比较基因组学分析表明, 基因的突变导致 Hxu-CSS 途径的表达上调。最重要的是,在实验室菌株 PAO1 中缺失 基因簇降低了其 BSI 能力,而 HxuIRA 途径的过表达则在小鼠败血症模型中促进了 BSI。我们进一步证明,血浆中的多种成分,包括血红素、血红蛋白、血红素清除蛋白触珠蛋白和血红素结合蛋白,以及铁传递蛋白转铁蛋白,都可以激活 Hxu 系统。总之,这些研究表明,Hxu-CSS 系统是铜绿假单胞菌在 BSI 中适应性发病机制的一个重要信号转导途径。

相似文献

1
High-Level Expression of Cell-Surface Signaling System Hxu Enhances Pseudomonas aeruginosa Bloodstream Infection.
Infect Immun. 2022 Oct 20;90(10):e0032922. doi: 10.1128/iai.00329-22. Epub 2022 Sep 28.
2
Pseudomonas aeruginosa possesses three distinct systems for sensing and using the host molecule haem.
Environ Microbiol. 2019 Dec;21(12):4629-4647. doi: 10.1111/1462-2920.14773. Epub 2019 Sep 8.
4
A comparative genomics approach identifies contact-dependent growth inhibition as a virulence determinant.
Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6811-6821. doi: 10.1073/pnas.1919198117. Epub 2020 Mar 10.
5
A Novel extracytoplasmic function (ECF) sigma factor regulates virulence in Pseudomonas aeruginosa.
PLoS Pathog. 2009 Sep;5(9):e1000572. doi: 10.1371/journal.ppat.1000572. Epub 2009 Sep 4.
6
The small RNA PrrH of Pseudomonas aeruginosa regulates hemolysis and oxidative resistance in bloodstream infection.
Microb Pathog. 2023 Jul;180:106124. doi: 10.1016/j.micpath.2023.106124. Epub 2023 Apr 25.
8
Identification of quorum-sensing regulated proteins in the opportunistic pathogen Pseudomonas aeruginosa by proteomics.
Environ Microbiol. 2003 Dec;5(12):1350-69. doi: 10.1046/j.1462-2920.2003.00532.x.
9
The prrF-encoded small regulatory RNAs are required for iron homeostasis and virulence of Pseudomonas aeruginosa.
Infect Immun. 2015 Mar;83(3):863-75. doi: 10.1128/IAI.02707-14. Epub 2014 Dec 15.

引用本文的文献

1
Novel evidence on sepsis-inducing pathogens: from laboratory to bedside.
Front Microbiol. 2023 Jun 23;14:1198200. doi: 10.3389/fmicb.2023.1198200. eCollection 2023.
2
Mechanisms of iron homeostasis in Pseudomonas aeruginosa and emerging therapeutics directed to disrupt this vital process.
Microb Biotechnol. 2023 Jul;16(7):1475-1491. doi: 10.1111/1751-7915.14241. Epub 2023 Mar 1.

本文引用的文献

1
ECF Sigma Factor HxuI Is Critical for Fitness of during Infection.
Microbiol Spectr. 2022 Feb 23;10(1):e0162021. doi: 10.1128/spectrum.01620-21. Epub 2022 Jan 19.
3
Pyocin efficacy in a murine model of Pseudomonas aeruginosa sepsis.
J Antimicrob Chemother. 2021 Aug 12;76(9):2317-2324. doi: 10.1093/jac/dkab199.
4
NusG, an Ancient Yet Rapidly Evolving Transcription Factor.
Front Microbiol. 2021 Jan 8;11:619618. doi: 10.3389/fmicb.2020.619618. eCollection 2020.
5
A tunable anthranilate-inducible gene expression system for Pseudomonas species.
Appl Microbiol Biotechnol. 2021 Jan;105(1):247-258. doi: 10.1007/s00253-020-11034-8. Epub 2020 Dec 3.
6
Hemopexin as an Inhibitor of Hemolysis-Induced Complement Activation.
Front Immunol. 2020 Jul 31;11:1684. doi: 10.3389/fimmu.2020.01684. eCollection 2020.
7
Haptoglobin: From hemoglobin scavenging to human health.
Mol Aspects Med. 2020 Jun;73:100851. doi: 10.1016/j.mam.2020.100851. Epub 2020 Jul 11.
9
Molecular genetic analysis of an XDR Pseudomonas aeruginosa ST664 clone carrying multiple conjugal plasmids.
J Antimicrob Chemother. 2020 Jun 1;75(6):1443-1452. doi: 10.1093/jac/dkaa063.
10
High-efficiency protein delivery into transfection-recalcitrant cell types.
Biotechnol Bioeng. 2020 Mar;117(3):816-831. doi: 10.1002/bit.27245. Epub 2019 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验