Suppr超能文献

单细胞分辨率下浮游和固着细菌种群的空间转录组学。

Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution.

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.

出版信息

Science. 2021 Aug 13;373(6556). doi: 10.1126/science.abi4882.

Abstract

Capturing the heterogeneous phenotypes of microbial populations at relevant spatiotemporal scales is highly challenging. Here, we present par-seqFISH (parallel sequential fluorescence in situ hybridization), a transcriptome-imaging approach that records gene expression and spatial context within microscale assemblies at a single-cell and molecule resolution. We applied this approach to the opportunistic pathogen , analyzing about 600,000 individuals across dozens of conditions in planktonic and biofilm cultures. We identified numerous metabolic- and virulence-related transcriptional states that emerged dynamically during planktonic growth, as well as highly spatially resolved metabolic heterogeneity in sessile populations. Our data reveal that distinct physiological states can coexist within the same biofilm just several micrometers away, underscoring the importance of the microenvironment. Our results illustrate the complex dynamics of microbial populations and present a new way of studying them at high resolution.

摘要

在相关的时空尺度上捕捉微生物种群的异质表型极具挑战性。在这里,我们提出了 par-seqFISH(平行顺序荧光原位杂交),这是一种转录组成像方法,可以在单细胞和分子分辨率下记录微尺度组合内的基因表达和空间背景。我们将这种方法应用于机会性病原体 ,在浮游生物和生物膜培养物中分析了数十种条件下的约 60 万个个体。我们鉴定了许多与代谢和毒力相关的转录状态,这些状态在浮游生长过程中动态出现,以及在固着群体中高度空间分辨的代谢异质性。我们的数据表明,不同的生理状态可以在同一生物膜内共存,即使它们之间只有几微米的距离,这凸显了微环境的重要性。我们的结果说明了微生物种群的复杂动态,并提出了一种新的高分辨率研究它们的方法。

相似文献

3
Interrelationships between colonies, biofilms, and planktonic cells of Pseudomonas aeruginosa.
J Bacteriol. 2007 Mar;189(6):2411-6. doi: 10.1128/JB.01687-06. Epub 2007 Jan 12.
5
BdlA, DipA and induced dispersion contribute to acute virulence and chronic persistence of Pseudomonas aeruginosa.
PLoS Pathog. 2014 Jun 5;10(6):e1004168. doi: 10.1371/journal.ppat.1004168. eCollection 2014 Jun.
6
Biofilms and type III secretion are not mutually exclusive in Pseudomonas aeruginosa.
Microbiology (Reading). 2009 Mar;155(Pt 3):687-698. doi: 10.1099/mic.0.025551-0.
8
Transcriptome analysis of quorum-sensing regulation and virulence factor expression in Pseudomonas aeruginosa.
Vaccine. 2004 Dec 6;22 Suppl 1:S15-20. doi: 10.1016/j.vaccine.2004.08.011.
9
Tracking the Dynamic Relationship between Cellular Systems and Extracellular Subproteomes in Pseudomonas aeruginosa Biofilms.
J Proteome Res. 2015 Nov 6;14(11):4524-37. doi: 10.1021/acs.jproteome.5b00262. Epub 2015 Oct 2.

引用本文的文献

1
Single-cell RNA sequencing using split-pool barcoding reveals transcriptional heterogeneity in with implications for periodontal pathogenesis.
J Oral Microbiol. 2025 Jul 31;17(1):2540827. doi: 10.1080/20002297.2025.2540827. eCollection 2025.
2
The tumor microbiome in cancer progression: mechanisms and therapeutic potential.
Mol Cancer. 2025 Jul 15;24(1):195. doi: 10.1186/s12943-025-02403-w.
4
An exciting future for microbial molecular biology and physiology.
mBio. 2025 Aug 13;16(8):e0069425. doi: 10.1128/mbio.00694-25. Epub 2025 Jun 30.
5
Unraveling the Role of the Microbiota in Cancer Immunotherapy: A New Frontier.
Research (Wash D C). 2025 Jun 24;8:0744. doi: 10.34133/research.0744. eCollection 2025.
6
Dissecting the physics of bacterial biofilms with agent-based simulations.
Curr Opin Solid State Mater Sci. 2025 Jul;37. doi: 10.1016/j.cossms.2025.101228. Epub 2025 May 31.
7
Microbiome in cancer metastasis: biological insights and emerging spatial omics methods.
Front Cell Infect Microbiol. 2025 Jun 4;15:1559870. doi: 10.3389/fcimb.2025.1559870. eCollection 2025.
10
Unravelling tumour spatiotemporal heterogeneity using spatial multimodal data.
Clin Transl Med. 2025 May;15(5):e70331. doi: 10.1002/ctm2.70331.

本文引用的文献

1
Integrated spatial genomics reveals global architecture of single nuclei.
Nature. 2021 Feb;590(7845):344-350. doi: 10.1038/s41586-020-03126-2. Epub 2021 Jan 27.
3
Microbial single-cell RNA sequencing by split-pool barcoding.
Science. 2021 Feb 19;371(6531). doi: 10.1126/science.aba5257. Epub 2020 Dec 17.
4
Highly multiplexed spatial mapping of microbial communities.
Nature. 2020 Dec;588(7839):676-681. doi: 10.1038/s41586-020-2983-4. Epub 2020 Dec 2.
5
Metabolic Microenvironments Drive Microbial Differentiation and Antibiotic Resistance.
Trends Genet. 2021 Jan;37(1):4-8. doi: 10.1016/j.tig.2020.10.007. Epub 2020 Nov 14.
6
Single-cell RNA-sequencing reports growth-condition-specific global transcriptomes of individual bacteria.
Nat Microbiol. 2020 Oct;5(10):1202-1206. doi: 10.1038/s41564-020-0774-1. Epub 2020 Aug 17.
7
Metabolic Heterogeneity and Cross-Feeding in Bacterial Multicellular Systems.
Trends Microbiol. 2020 Sep;28(9):732-743. doi: 10.1016/j.tim.2020.03.008. Epub 2020 Apr 23.
8
Prokaryotic single-cell RNA sequencing by in situ combinatorial indexing.
Nat Microbiol. 2020 Oct;5(10):1192-1201. doi: 10.1038/s41564-020-0729-6. Epub 2020 May 25.
9
Role of PstS in the Pathogenesis of Acinetobacter baumannii Under Microaerobiosis and Normoxia.
J Infect Dis. 2020 Sep 1;222(7):1204-1212. doi: 10.1093/infdis/jiaa201.
10
Spatial Ecology of the Human Tongue Dorsum Microbiome.
Cell Rep. 2020 Mar 24;30(12):4003-4015.e3. doi: 10.1016/j.celrep.2020.02.097.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验