Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
Science. 2021 Aug 13;373(6556). doi: 10.1126/science.abi4882.
Capturing the heterogeneous phenotypes of microbial populations at relevant spatiotemporal scales is highly challenging. Here, we present par-seqFISH (parallel sequential fluorescence in situ hybridization), a transcriptome-imaging approach that records gene expression and spatial context within microscale assemblies at a single-cell and molecule resolution. We applied this approach to the opportunistic pathogen , analyzing about 600,000 individuals across dozens of conditions in planktonic and biofilm cultures. We identified numerous metabolic- and virulence-related transcriptional states that emerged dynamically during planktonic growth, as well as highly spatially resolved metabolic heterogeneity in sessile populations. Our data reveal that distinct physiological states can coexist within the same biofilm just several micrometers away, underscoring the importance of the microenvironment. Our results illustrate the complex dynamics of microbial populations and present a new way of studying them at high resolution.
在相关的时空尺度上捕捉微生物种群的异质表型极具挑战性。在这里,我们提出了 par-seqFISH(平行顺序荧光原位杂交),这是一种转录组成像方法,可以在单细胞和分子分辨率下记录微尺度组合内的基因表达和空间背景。我们将这种方法应用于机会性病原体 ,在浮游生物和生物膜培养物中分析了数十种条件下的约 60 万个个体。我们鉴定了许多与代谢和毒力相关的转录状态,这些状态在浮游生长过程中动态出现,以及在固着群体中高度空间分辨的代谢异质性。我们的数据表明,不同的生理状态可以在同一生物膜内共存,即使它们之间只有几微米的距离,这凸显了微环境的重要性。我们的结果说明了微生物种群的复杂动态,并提出了一种新的高分辨率研究它们的方法。