Suppr超能文献

一种比较基因组学方法将依赖接触的生长抑制鉴定为一种毒力决定因素。

A comparative genomics approach identifies contact-dependent growth inhibition as a virulence determinant.

机构信息

Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611;

Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611.

出版信息

Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6811-6821. doi: 10.1073/pnas.1919198117. Epub 2020 Mar 10.

Abstract

Emerging evidence suggests the accessory genome is enriched with uncharacterized virulence genes. Identification and characterization of such genes may reveal novel pathogenic mechanisms used by particularly virulent isolates. Here, we utilized a mouse bacteremia model to quantify the virulence of 100 individual bloodstream isolates and performed whole-genome sequencing to identify accessory genomic elements correlated with increased bacterial virulence. From this work, we identified a specific contact-dependent growth inhibition (CDI) system enriched among highly virulent isolates. CDI systems contain a large exoprotein (CdiA) with a C-terminal toxin (CT) domain that can vary between different isolates within a species. Prior work has revealed that delivery of a CdiA-CT domain upon direct cell-to-cell contact can inhibit replication of a susceptible target bacterium. Aside from mediating interbacterial competition, we observed our virulence-associated CdiA-CT domain to promote toxicity against mammalian cells in culture and lethality during mouse bacteremia. Structural and functional studies revealed this CdiA-CT domain to have in vitro tRNase activity, and mutations that abrogated this tRNAse activity in vitro also attenuated virulence. Furthermore, CdiA contributed to virulence in mice even in the absence of contact-dependent signaling. Overall, our findings indicate that this CDI system functions as both an interbacterial inhibition system and a bacterial virulence factor against a mammalian host. These findings provide an impetus for continued studies into the complex role of CDI systems in pathogenesis.

摘要

新出现的证据表明,辅助基因组富含未被描述的毒力基因。鉴定和描述这些基因可能揭示特别毒力分离株所使用的新的致病机制。在这里,我们利用小鼠菌血症模型来量化 100 个单个血流分离株的毒力,并进行全基因组测序,以确定与增加细菌毒力相关的辅助基因组元件。通过这项工作,我们发现了一种特定的接触依赖性生长抑制(CDI)系统在高毒力分离株中富集。CDI 系统包含一个大型外蛋白(CdiA),其 C 末端具有毒素(CT)结构域,在同一物种的不同分离株之间可能有所不同。先前的工作表明,在直接细胞间接触时,CdiA-CT 结构域的传递可以抑制易感靶细菌的复制。除了介导细菌间竞争外,我们还观察到与我们的毒力相关的 CdiA-CT 结构域在培养的哺乳动物细胞中促进毒性,并在小鼠菌血症期间导致致死性。结构和功能研究表明,该 CdiA-CT 结构域在体外具有 tRNA 酶活性,并且在体外破坏这种 tRNA 酶活性的突变也减弱了毒力。此外,即使在没有接触依赖性信号的情况下,CdiA 也有助于小鼠的毒力。总的来说,我们的研究结果表明,该 CDI 系统既是一种细菌间抑制系统,也是一种针对哺乳动物宿主的细菌毒力因子。这些发现为进一步研究 CDI 系统在发病机制中的复杂作用提供了动力。

相似文献

1
A comparative genomics approach identifies contact-dependent growth inhibition as a virulence determinant.
Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6811-6821. doi: 10.1073/pnas.1919198117. Epub 2020 Mar 10.
2
Diversity of Contact-Dependent Growth Inhibition Systems of .
J Bacteriol. 2019 Jun 21;201(14). doi: 10.1128/JB.00776-18. Print 2019 Jul 15.
3
Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways.
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11341-6. doi: 10.1073/pnas.1512124112. Epub 2015 Aug 24.
4
Unraveling the essential role of CysK in CDI toxin activation.
Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):9792-7. doi: 10.1073/pnas.1607112113. Epub 2016 Aug 16.
6
Functional Characterization of Pseudomonas Contact Dependent Growth Inhibition (CDI) Systems.
PLoS One. 2016 Jan 25;11(1):e0147435. doi: 10.1371/journal.pone.0147435. eCollection 2016.
7
Plasmid pUM505 encodes a Toxin-Antitoxin system conferring plasmid stability and increased Pseudomonas aeruginosa virulence.
Microb Pathog. 2017 Nov;112:259-268. doi: 10.1016/j.micpath.2017.09.060. Epub 2017 Sep 29.
9
Identification of a target cell permissive factor required for contact-dependent growth inhibition (CDI).
Genes Dev. 2012 Mar 1;26(5):515-25. doi: 10.1101/gad.182345.111. Epub 2012 Feb 14.
10
Toxin on a stick: modular CDI toxin delivery systems play roles in bacterial competition.
Virulence. 2011 Jul-Aug;2(4):356-9. doi: 10.4161/viru.2.4.16463. Epub 2011 Jul 1.

引用本文的文献

2
Pathogenicity and virulence of : Recent advances and under-investigated topics.
Virulence. 2025 Dec;16(1):2503430. doi: 10.1080/21505594.2025.2503430. Epub 2025 May 14.
3
Genomic insights into the rapid rise of ST463: A high-risk lineage's adaptive strategy in China.
Virulence. 2025 Dec;16(1):2497901. doi: 10.1080/21505594.2025.2497901. Epub 2025 May 4.
4
population dynamics in a vancomycin-induced murine model of gastrointestinal carriage.
mBio. 2025 May 14;16(5):e0313624. doi: 10.1128/mbio.03136-24. Epub 2025 Apr 10.
7
Refined methodology for quantifying virulence using .
Microbiol Spectr. 2025 Feb 4;13(2):e0166624. doi: 10.1128/spectrum.01666-24. Epub 2024 Dec 12.
8
Contact-dependent growth inhibition (CDI) systems deploy a large family of polymorphic ionophoric toxins for inter-bacterial competition.
PLoS Genet. 2024 Nov 26;20(11):e1011494. doi: 10.1371/journal.pgen.1011494. eCollection 2024 Nov.
9
population dynamics in a vancomycin-induced murine model of gastrointestinal carriage.
bioRxiv. 2024 Aug 20:2024.08.19.608679. doi: 10.1101/2024.08.19.608679.
10
The type II secretion system as an underappreciated and understudied mediator of interbacterial antagonism.
Infect Immun. 2024 Aug 13;92(8):e0020724. doi: 10.1128/iai.00207-24. Epub 2024 Jul 9.

本文引用的文献

1
Diversity of Contact-Dependent Growth Inhibition Systems of .
J Bacteriol. 2019 Jun 21;201(14). doi: 10.1128/JB.00776-18. Print 2019 Jul 15.
2
CDI/CDS system-encoding genes of Burkholderia thailandensis are located in a mobile genetic element that defines a new class of transposon.
PLoS Genet. 2019 Jan 7;15(1):e1007883. doi: 10.1371/journal.pgen.1007883. eCollection 2019 Jan.
4
Microbial Interactions in the Cystic Fibrosis Airway.
J Clin Microbiol. 2018 Jul 26;56(8). doi: 10.1128/JCM.00354-18. Print 2018 Aug.
5
ClustAGE: a tool for clustering and distribution analysis of bacterial accessory genomic elements.
BMC Bioinformatics. 2018 Apr 20;19(1):150. doi: 10.1186/s12859-018-2154-x.
6
Contact-Dependent Growth Inhibition Plays Dual Role in Host-Pathogen Interactions.
mSphere. 2017 Nov 15;2(6). doi: 10.1128/mSphere.00336-17. eCollection 2017 Nov-Dec.
7
Pathogenicity Locus, Core Genome, and Accessory Gene Contributions to Virulence.
mBio. 2017 Aug 8;8(4):e00885-17. doi: 10.1128/mBio.00885-17.
8
Interbacterial signaling via Burkholderia contact-dependent growth inhibition system proteins.
Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):8296-301. doi: 10.1073/pnas.1606323113. Epub 2016 Jun 22.
9
phylosignal: an R package to measure, test, and explore the phylogenetic signal.
Ecol Evol. 2016 Mar 19;6(9):2774-80. doi: 10.1002/ece3.2051. eCollection 2016 May.
10
Functional Characterization of Pseudomonas Contact Dependent Growth Inhibition (CDI) Systems.
PLoS One. 2016 Jan 25;11(1):e0147435. doi: 10.1371/journal.pone.0147435. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验