Suppr超能文献

伪:使用局部敏感哈希和相关反馈在多元时间序列中进行交互式模式搜索。

PSEUDo: Interactive Pattern Search in Multivariate Time Series with Locality-Sensitive Hashing and Relevance Feedback.

作者信息

Yu Yuncong, Kruyff Dylan, Jiao Jiao, Becker Tim, Behrisch Michael

出版信息

IEEE Trans Vis Comput Graph. 2023 Jan;29(1):33-42. doi: 10.1109/TVCG.2022.3209431. Epub 2022 Dec 16.

Abstract

We present PSEUDo, a visual pattern retrieval tool for multivariate time series. It aims to overcome the uneconomic (re-)training problem accompanying deep learning-based methods. Very high-dimensional time series emerge on an unprecedented scale due to increasing sensor usage and data storage. Visual pattern search is one of the most frequent tasks on time series. Automatic pattern retrieval methods often suffer from inefficient training data, a lack of ground truth labels, and a discrepancy between the similarity perceived by the algorithm and required by the user or the task. Our proposal is based on the query-aware locality-sensitive hashing technique to create a representation of multivariate time series windows. It features sub-linear training and inference time with respect to data dimensions. This performance gain allows an instantaneous relevance-feedback-driven adaption to converge to users' similarity notion. We demonstrate PSEUDo's performance in terms of accuracy, speed, steerability, and usability through quantitative benchmarks with representative time series retrieval methods and a case study. We find that PSEUDo detects patterns in high-dimensional time series efficiently, improves the result with relevance feedback through feature selection, and allows an understandable as well as user-friendly retrieval process.

摘要

我们展示了PSEUDo,一种用于多元时间序列的视觉模式检索工具。它旨在克服基于深度学习的方法所伴随的不经济的(重新)训练问题。由于传感器使用和数据存储的增加,超高维时间序列以前所未有的规模出现。视觉模式搜索是时间序列上最常见的任务之一。自动模式检索方法常常受到训练数据效率低下、缺乏真实标签以及算法所感知的相似性与用户或任务所需的相似性之间存在差异的困扰。我们的提议基于查询感知局部敏感哈希技术,以创建多元时间序列窗口的表示。它具有相对于数据维度的亚线性训练和推理时间。这种性能提升允许通过即时的相关性反馈驱动的自适应来收敛到用户的相似性概念。我们通过与代表性时间序列检索方法的定量基准测试和一个案例研究,展示了PSEUDo在准确性、速度、可操纵性和可用性方面的性能。我们发现PSEUDo能够有效地检测高维时间序列中的模式,通过特征选择利用相关性反馈改进结果,并允许进行可理解且用户友好的检索过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验