Suppr超能文献

核化局部敏感哈希。

Kernelized locality-sensitive hashing.

机构信息

Computer Science and Engineering Department, Ohio State University, 395 Dreese Labs, Columbus, OH 43210, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2012 Jun;34(6):1092-104. doi: 10.1109/TPAMI.2011.219.

Abstract

Fast retrieval methods are critical for many large-scale and data-driven vision applications. Recent work has explored ways to embed high-dimensional features or complex distance functions into a low-dimensional Hamming space where items can be efficiently searched. However, existing methods do not apply for high-dimensional kernelized data when the underlying feature embedding for the kernel is unknown. We show how to generalize locality-sensitive hashing to accommodate arbitrary kernel functions, making it possible to preserve the algorithm's sublinear time similarity search guarantees for a wide class of useful similarity functions. Since a number of successful image-based kernels have unknown or incomputable embeddings, this is especially valuable for image retrieval tasks. We validate our technique on several data sets, and show that it enables accurate and fast performance for several vision problems, including example-based object classification, local feature matching, and content-based retrieval.

摘要

快速检索方法对于许多大规模和数据驱动的视觉应用至关重要。最近的工作已经探索了将高维特征或复杂距离函数嵌入到低维 Hamming 空间的方法,以便可以有效地搜索项目。然而,当内核的基础特征嵌入未知时,现有的方法不适用于高维核化数据。我们展示了如何将局部敏感哈希推广到适应任意核函数,从而为广泛的有用相似性函数保留算法的次线性时间相似性搜索保证。由于一些成功的基于图像的内核具有未知或不可计算的嵌入,因此这对于图像检索任务尤其有价值。我们在几个数据集上验证了我们的技术,并表明它可以为几个视觉问题提供准确和快速的性能,包括基于示例的对象分类、局部特征匹配和基于内容的检索。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验