Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CONICET, 1900 La Plata, Argentina.
AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria.
Anal Chem. 2022 Oct 11;94(40):13820-13828. doi: 10.1021/acs.analchem.2c02373. Epub 2022 Sep 28.
The interaction between polyamines and phosphate species is found in a wide range of biological and abiotic systems, yielding crucial consequences that range from the formation of supramolecular colloids to structure determination. In this work, the occurrence of phosphate-amino interactions is evidenced from changes in the electronic response of graphene field effect transistors (gFETs). First, the surface of the transistors is modified with poly(allylamine), and the effect of phosphate binding on the transfer characteristics is interpreted in terms of its impact on the surface charge density. The electronic response of the polyamine-functionalized gFETs is shown to be sensitive to the presence of different phosphate anions, such as orthophosphate, adenosine triphosphate, and tripolyphosphate, and a simple binding model is developed to explain the dependence of the shift of the Dirac point potential on the phosphate species concentration. Afterward, the impact of phosphate-amino interactions on the immobilization of enzymes to polyamine-modified graphene surfaces is investigated, and a decrease in the amount of anchored enzyme as the phosphate concentration increases is found. Finally, multilayer polyamine-urease biosensors are fabricated while increasing the phosphate concentration in the enzyme solution, and the sensing properties of the gFETs toward urea are evaluated. It is found that the presence of simple phosphate anions alters the nanoarchitecture of the polyelectrolyte-urease assemblies, with direct implications on urea sensing.
多胺与磷酸盐之间的相互作用存在于广泛的生物和非生物体系中,产生了从超分子胶体形成到结构确定等重要后果。在这项工作中,从石墨烯场效应晶体管(gFET)的电子响应变化中证实了磷酸-氨基相互作用的存在。首先,用聚(烯丙胺)对晶体管的表面进行修饰,并根据其对表面电荷密度的影响,解释磷酸盐结合对转移特性的影响。结果表明,经过聚胺功能化的 gFET 的电子响应对不同的磷酸盐阴离子(如正磷酸盐、三磷酸腺苷和三聚磷酸盐)的存在很敏感,并开发了一个简单的结合模型来解释狄拉克点电位的移动与磷酸盐浓度的关系。然后,研究了磷酸-氨基相互作用对酶固定在聚胺修饰的石墨烯表面上的影响,发现随着磷酸盐浓度的增加,固定的酶量减少。最后,在酶溶液中增加磷酸盐浓度的情况下,制备了多层聚胺-脲酶生物传感器,并评估了 gFET 对尿素的传感性能。结果发现,简单的磷酸盐阴离子的存在改变了聚电解质-脲酶组装体的纳米结构,这对尿素传感有直接影响。