Suppr超能文献

金属-载体相互作用在分子单原子簇催化剂中的作用。

Metal-Support Interactions in Molecular Single-Site Cluster Catalysts.

机构信息

Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.

出版信息

J Am Chem Soc. 2022 Oct 12;144(40):18459-18469. doi: 10.1021/jacs.2c07033. Epub 2022 Sep 28.

Abstract

This study provides atomistic insights into the interface between a single-site catalyst and a transition metal chalcogenide support and reveals that peak catalytic activity occurs when edge/support redox cooperativity is maximized. A molecular platform MCoSe(PEt)(L) (-M, M = Cr, Mn, Fe, Co, Cu, and Zn) was designed in which the active site (M)/support (CoSe) interactions are interrogated by systematically probing the electronic and structural changes that occur as the identity of the metal varies. All 3d transition metal -M clusters display remarkable catalytic activity for coupling tosyl azide and -butyl isocyanide, with Mn and Co derivatives showing the fastest turnover in the series. Structural, electronic, and magnetic characterization of the clusters was performed using single crystal X-ray diffraction, H and P nuclear magnetic resonance spectroscopy, electronic absorption spectroscopy, cyclic voltammetry, and computational methods. Distinct metal/support redox regimes can be accessed in -M based on the energy of the edge metal's frontier orbitals with respect to those of the cluster support. As the degree of electronic interaction between the edge and the support increases, a cooperative regime is reached wherein the support can deliver electrons to the catalytic site, increasing the reactivity of key metal-nitrenoid intermediates.

摘要

本研究提供了关于单原子催化剂与过渡金属硫属化物载体界面的原子水平见解,并揭示了当边缘/载体氧化还原协同作用最大化时,会出现峰值催化活性。设计了一个分子平台 MCoSe(PEt)(L)(-M,M = Cr、Mn、Fe、Co、Cu 和 Zn),通过系统地研究金属种类变化时发生的电子和结构变化,来探究活性位点 (M)/载体 (CoSe) 相互作用。所有 3d 过渡金属 -M 簇都显示出对甲苯磺酰叠氮化物和 -丁基异氰化物偶联的显著催化活性,其中 Mn 和 Co 衍生物在该系列中表现出最快的周转数。使用单晶 X 射线衍射、H 和 P 核磁共振波谱、电子吸收光谱、循环伏安法和计算方法对簇进行了结构、电子和磁性表征。基于边缘金属前线轨道相对于簇载体的能量,可以在 -M 中访问不同的金属/载体氧化还原区。随着边缘和载体之间电子相互作用程度的增加,会达到协同区,其中载体可以向催化位点提供电子,从而增加关键金属-亚氮中间体的反应性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验