支持布美他尼用于治疗与相关的阿尔茨海默病的计算再利用的实验和真实世界证据。

Experimental and real-world evidence supporting the computational repurposing of bumetanide for -related Alzheimer's disease.

机构信息

Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA.

Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.

出版信息

Nat Aging. 2021 Oct;1(10):932-947. doi: 10.1038/s43587-021-00122-7. Epub 2021 Oct 11.

Abstract

The evident genetic, pathological, and clinical heterogeneity of Alzheimer's disease (AD) poses challenges for traditional drug development. We conducted a computational drug repurposing screen for drugs to treat apolipoprotein (apo) E4-related AD. We first established apoE-genotype-dependent transcriptomic signatures of AD by analyzing publicly-available human brain database. We then queried these signatures against the Connectivity Map database containing transcriptomic perturbations of >1300 drugs to identify those that best reverse apoE-genotype-specific AD signatures. Bumetanide was identified as a top drug for apoE4 AD. Bumetanide treatment of apoE4 mice without or with Aβ accumulation rescued electrophysiological, pathological, or cognitive deficits. Single-nucleus RNA-sequencing revealed transcriptomic reversal of AD signatures in specific cell types in these mice, a finding confirmed in apoE4-iPSC-derived neurons. In humans, bumetanide exposure was associated with a significantly lower AD prevalence in individuals over the age of 65 in two electronic health record databases, suggesting effectiveness of bumetanide in preventing AD.

摘要

阿尔茨海默病(AD)在遗传、病理和临床方面表现出明显的异质性,这给传统的药物开发带来了挑战。我们对用于治疗载脂蛋白(apo)E4 相关 AD 的药物进行了计算药物再利用筛选。我们首先通过分析公开的人类大脑数据库,建立了依赖 apoE 基因型的 AD 转录组特征。然后,我们将这些特征与包含 >1300 种药物转录组扰动的连接图谱数据库进行查询,以确定最能逆转 apoE 基因型特异性 AD 特征的药物。布美他尼被确定为治疗 apoE4 AD 的首选药物。布美他尼治疗不伴有或伴有 Aβ 积累的 apoE4 小鼠可挽救电生理、病理或认知缺陷。单细胞 RNA-seq 揭示了在这些小鼠的特定细胞类型中 AD 特征的转录组逆转,这一发现在 apoE4-iPSC 衍生的神经元中得到了证实。在人类中,两项电子健康记录数据库的研究表明,布美他尼暴露与 65 岁以上个体 AD 患病率显著降低相关,提示布美他尼预防 AD 的有效性。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索