Galicia Aguirre Carlos, Tshilenge Kizito-Tshitoko, Battistoni Elena, Lopez-Ramirez Alejandro, Naphade Swati, Perez Kevin, Gerencser Akos A, Song Sicheng, Mooney Sean D, Melov Simon, Ehrlich Michelle E, Ellerby Lisa M
Buck Institute for Research on Aging, Novato, CA 94945, United States.
Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90893, United States.
Stem Cells. 2025 Jul 21;43(8). doi: 10.1093/stmcls/sxaf029.
Huntington's disease (HD) is a neurodegenerative disorder caused by an expansion of CAG repeats in exon 1 of the huntingtin (HTT) gene, resulting in a mutant HTT (mHTT) protein. Although mHTT is expressed in all tissues, it significantly affects medium spiny neurons (MSNs) in the striatum, resulting in their loss and the subsequent motor function impairment in HD. While HD symptoms typically emerge in midlife, disrupted MSN neurodevelopment is important. To explore the effects of mHTT on MSN development, we differentiated HD-induced pluripotent stem cells (iPSCs) and isogenic controls into neuronal stem cells, and then generated a developing MSN population encompassing early, intermediate progenitors, and nascent MSNs. Single-cell RNA sequencing revealed that the developmental trajectory of MSNs in our model closely emulated the trajectory of human fetal striatal neurons. However, in the HD MSN cultures, several crucial genes required for proper MSN maturation were downregulated, including members of the DLX family of transcription factors. Our analysis also uncovered a progressive dysregulation of multiple HD-related pathways as MSNs developed, including the NRF2-mediated oxidative stress response and mitogen-activated protein kinase signaling. Using the transcriptional profile of developing HD MSNs, we searched the L1000 dataset for small molecules that induce the opposite gene expression pattern. We pinpointed numerous small molecules with known benefits in HD models and previously untested novel molecules. A top candidate, Cerulenin, partially restored the DARPP-32 levels and electrical activity in HD MSNs, and also modulated genes involved in multiple HD-related pathways.
亨廷顿舞蹈症(HD)是一种神经退行性疾病,由亨廷顿蛋白(HTT)基因外显子1中CAG重复序列的扩增引起,导致突变的HTT(mHTT)蛋白产生。尽管mHTT在所有组织中均有表达,但它对纹状体中的中等棘状神经元(MSN)有显著影响,导致其丢失以及随后HD患者出现运动功能障碍。虽然HD症状通常在中年出现,但MSN神经发育紊乱也很重要。为了探究mHTT对MSN发育的影响,我们将HD诱导多能干细胞(iPSC)及其同基因对照分化为神经干细胞,然后生成了一个包含早期、中间祖细胞和新生MSN的发育中的MSN群体。单细胞RNA测序显示,我们模型中MSN的发育轨迹与人类胎儿纹状体神经元的轨迹非常相似。然而,在HD的MSN培养物中,MSN正常成熟所需的几个关键基因被下调,包括转录因子DLX家族的成员。我们的分析还发现,随着MSN的发育,多个与HD相关的通路出现渐进性失调,包括NRF2介导的氧化应激反应和丝裂原活化蛋白激酶信号传导。利用发育中的HD MSN的转录谱,我们在L1000数据集中搜索能够诱导相反基因表达模式的小分子。我们确定了许多在HD模型中具有已知益处的小分子以及以前未经测试的新分子。一个顶级候选分子——浅蓝菌素,部分恢复了HD MSN中的DARPP-32水平和电活动,并且还调节了多个与HD相关通路中的基因。