Yu Minhui, Guan Hao, Fang Yuqi, Yue Ling, Liu Mingxia
Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
Med Image Comput Comput Assist Interv. 2022 Sep;13431:24-33. doi: 10.1007/978-3-031-16431-6_3. Epub 2022 Sep 15.
Growing evidence shows that subjective cognitive decline (SCD) among elderly individuals is the possible pre-clinical stage of Alzheimer's disease (AD). To prevent the potential disease conversion, it is critical to investigate biomarkers for SCD progression. Previous learning-based methods employ T1-weighted magnetic resonance imaging (MRI) data to aid the future progression prediction of SCD, but often fail to build reliable models due to the insufficient number of subjects and imbalanced sample classes. A few studies suggest building a model on a large-scale AD-related dataset and then applying it to another dataset for SCD progression via transfer learning. Unfortunately, they usually ignore significant data distribution gaps between different centers/domains. With the prior knowledge that SCD is at increased risk of underlying AD pathology, we propose a domain-prior-induced structural MRI adaptation (DSMA) method for SCD progression prediction by mitigating the distribution gap between SCD and AD groups. The proposed DSMA method consists of two parallel for MRI feature learning in the labeled source domain and unlabeled target domain, an to locate potential disease-associated brain regions, and a based on maximum mean discrepancy (MMD) for cross-domain feature alignment. Experimental results on the public ADNI dataset and an SCD dataset demonstrate the superiority of our method over several state-of-the-arts.
越来越多的证据表明,老年人的主观认知下降(SCD)可能是阿尔茨海默病(AD)的临床前阶段。为了预防潜在的疾病转化,研究SCD进展的生物标志物至关重要。先前基于学习的方法利用T1加权磁共振成像(MRI)数据来辅助SCD未来进展的预测,但由于受试者数量不足和样本类别不平衡,往往无法建立可靠的模型。一些研究建议在大规模AD相关数据集上建立模型,然后通过迁移学习将其应用于另一个SCD进展数据集。不幸的是,它们通常忽略了不同中心/领域之间显著的数据分布差距。基于SCD存在潜在AD病理风险增加的先验知识,我们提出了一种领域先验诱导的结构MRI适应(DSMA)方法,通过减轻SCD组和AD组之间的分布差距来预测SCD进展。所提出的DSMA方法由两个并行的部分组成,一个用于在有标签的源域和无标签的目标域中进行MRI特征学习,一个用于定位潜在疾病相关脑区,以及一个基于最大均值差异(MMD)的部分用于跨域特征对齐。在公共ADNI数据集和一个SCD数据集上的实验结果证明了我们的方法优于几种现有技术。