Suppr超能文献

通过监督对抗域适应解决胸部X光分类中的跨人群域转移问题。

Addressing cross-population domain shift in chest X-ray classification through supervised adversarial domain adaptation.

作者信息

Musa Aminu, Prasad Rajesh, Hernandez Monica

机构信息

Deparment of Computer Science, African University of Science and Technology, Abuja, 900107, Nigeria.

Department of Computer Science, Federal University Dutse, Dutse, Nigeria.

出版信息

Sci Rep. 2025 Apr 3;15(1):11383. doi: 10.1038/s41598-025-95390-3.

Abstract

Medical image analysis, empowered by artificial intelligence (AI), plays a crucial role in modern healthcare diagnostics. However, the effectiveness of machine learning models hinges on their ability to generalize to diverse patient populations, presenting domain shift challenges. This study explores the domain shift problem in chest X-ray classification, focusing on cross-population variations, especially in underrepresented groups. We analyze the impact of domain shifts across three population datasets acting as sources using a Nigerian chest X-ray dataset acting as the target. Model performance is evaluated to assess disparities between source and target populations, revealing large discrepancies when the models trained on a source were applied to the target domain. To address with the evident domain shift among the populations, we propose a supervised adversarial domain adaptation (ADA) technique. The feature extractor is first trained on the source domain using a supervised loss function in ADA. The feature extractor is then frozen, and an adversarial domain discriminator is introduced to distinguish between the source and target domains. Adversarial training fine-tunes the feature extractor, making features from both domains indistinguishable, thereby creating domain-invariant features. The technique was evaluated on the Nigerian dataset, showing significant improvements in chest X-ray classification performance. The proposed model achieved a 90.08% accuracy and a 96% AUC score, outperforming existing approaches such as multi-task learning (MTL) and continual learning (CL). This research highlights the importance of developing domain-aware models in AI-driven healthcare, offering a solution to cross-population domain shift challenges in medical imaging.

摘要

由人工智能(AI)赋能的医学图像分析在现代医疗诊断中发挥着关键作用。然而,机器学习模型的有效性取决于它们对不同患者群体的泛化能力,这带来了领域转移的挑战。本研究探讨胸部X光分类中的领域转移问题,重点关注跨人群差异,特别是在代表性不足的群体中。我们以尼日利亚胸部X光数据集为目标,分析了作为源的三个人口数据集之间领域转移的影响。评估模型性能以评估源人群和目标人群之间的差异,结果显示当在源数据上训练的模型应用于目标领域时存在很大差异。为了解决人群之间明显的领域转移问题,我们提出了一种监督对抗域适应(ADA)技术。在ADA中,首先使用监督损失函数在源域上训练特征提取器。然后冻结特征提取器,并引入一个对抗域判别器来区分源域和目标域。对抗训练对特征提取器进行微调,使两个域的特征无法区分,从而创建域不变特征。该技术在尼日利亚数据集上进行了评估,显示出胸部X光分类性能有显著提高。所提出的模型实现了90.08%的准确率和96%的AUC分数,优于多任务学习(MTL)和持续学习(CL)等现有方法。这项研究强调了在人工智能驱动的医疗保健中开发领域感知模型的重要性,为医学成像中的跨人群领域转移挑战提供了一种解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c9f/11968948/129e5eff8aab/41598_2025_95390_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验