Suppr超能文献

基于冷冻整条鱼过程中生化指标分析的电子鼻、电子舌和分光光度计预测马鲛鱼(Trachurus japonicus)的新鲜度。

Prediction of the freshness of horse mackerel (Trachurus japonicus) using E-nose, E-tongue, and colorimeter based on biochemical indexes analyzed during frozen storage of whole fish.

机构信息

College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products; National R &D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China.

College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products; National R &D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China.

出版信息

Food Chem. 2023 Feb 15;402:134325. doi: 10.1016/j.foodchem.2022.134325. Epub 2022 Sep 21.

Abstract

Electronic nose (E-nose), electronic tongue (E-tongue) and colorimeter combined with data fusion strategy and different machine learning algorithms (artificial neural network, ANN; extreme gradient boosting, XGBoost; random forest regression, RFR; support vector regression, SVR) were applied to quantitatively assess and predict the freshness of horse mackerel (Trachurus japonicus) during the 90-day frozen storage. The results showed that the fusion data of the E-nose, E-tongue and colorimeter could contain more information (with a total variance contribution rate of 94.734 %) than that of the independent one. ANN, RFR and XGBoost showed good performance in predicting biochemical indexes with the R (the square correlation coefficient of the Test set) ≥ 0.929, 0.936, 0.888, respectively, while SVR models showed a bad performance (R ≤ 0.835). In addition, among the established quantitative models, the RFR model had the best prediction effect on K value (freshness index) with R of 0.936, ANN model had the highest fitting degree in predicting carbonyl content (protein oxidation degree) with R of 0.978, XGBoost model had the best performance in predicting the TBA value (lipid oxidation degree) with R of 0.994, RFR model was the best strategy for predicting Ca-ATPase activity (protein denaturation degree) with R of 0.969. The results demonstrated that the freshness of frozen fish can be effectively evaluated and predicted by the combination of electronic sensor fusion signals.

摘要

电子鼻(E-nose)、电子舌(E-tongue)和比色计结合数据融合策略和不同的机器学习算法(人工神经网络、ANN;极端梯度提升、XGBoost;随机森林回归、RFR;支持向量回归、SVR)被应用于定量评估和预测马鲛鱼(Trachurus japonicus)在 90 天冷冻储存期间的新鲜度。结果表明,电子鼻、电子舌和比色计的融合数据比独立数据包含更多信息(总方差贡献率为 94.734%)。ANN、RFR 和 XGBoost 在预测生化指标方面表现良好,测试集的 R(平方相关系数)分别为≥0.929、0.936、0.888,而 SVR 模型表现不佳(R≤0.835)。此外,在所建立的定量模型中,RFR 模型对 K 值(新鲜度指数)的预测效果最好,R 为 0.936,ANN 模型对羰基含量(蛋白质氧化程度)的拟合度最高,R 为 0.978,XGBoost 模型对 TBA 值(脂质氧化程度)的预测效果最好,R 为 0.994,RFR 模型对 Ca-ATPase 活性(蛋白质变性程度)的预测效果最好,R 为 0.969。结果表明,电子传感器融合信号可有效评估和预测冷冻鱼的新鲜度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验