Xu Jiating, Shi Ruipeng, Chen Guanying, Dong Shuming, Yang Piaoping, Zhang Zhiyong, Niu Na, Gai Shili, He Fei, Fu Yujie, Lin Jun
Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China.
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China.
ACS Nano. 2020 Aug 25;14(8):9613-9625. doi: 10.1021/acsnano.0c00082. Epub 2020 Aug 12.
Reactive oxygen species (ROS)-based therapeutic modalities including chemodynamic therapy (CDT) and photodynamic therapy (PDT) hold great promise for conquering malignant tumors. However, these two methods tend to be restricted by the overexpressed glutathione (GSH) and hypoxia in the tumor microenvironment (TME). Here, we develop biodegradable copper/manganese silicate nanosphere (CMSN)-coated lanthanide-doped nanoparticles (LDNPs) for trimodal imaging-guided CDT/PDT synergistic therapy. The tridoped Yb/Er/Tm in the ultrasmall core and the optimal Yb/Ce doping in the shell enable the ultrabright dual-mode upconversion (UC) and downconversion (DC) emissions of LDNPs under near-infrared (NIR) laser excitation. The luminescence in the second near-infrared (NIR-II, 1000-1700 nm) window offers deep-tissue penetration, high spatial resolution, and reduced autofluorescence when used for optical imaging. Significantly, the CMSNs are capable of relieving the hypoxic TME through decomposing HO to produce O, which can react with the sample to generate O upon excitation of UC photons (PDT). The GSH-triggered degradation of CMSNs results in the release of Fenton-like Mn and Cu ions for OH generation (CDT); simultaneously, the released Mn ions couple with NIR-II luminescence imaging, computed tomography (CT) imaging, and magnetic resonance (MR) imaging of LDNPs, performing a TME-amplified trimodal effect. In such a nanomedicine, the TME modulation, bimetallic silicate photosensitizer, Fenton-like nanocatalyst, and NIR-II/MR/CT contrast agent were achieved "one for all", thereby realizing highly efficient tumor theranostics.
基于活性氧(ROS)的治疗方式,包括化学动力疗法(CDT)和光动力疗法(PDT),在攻克恶性肿瘤方面具有巨大潜力。然而,这两种方法往往受到肿瘤微环境(TME)中谷胱甘肽(GSH)过度表达和缺氧的限制。在此,我们开发了一种可生物降解的铜/锰硅酸盐纳米球(CMSN)包覆的镧系掺杂纳米颗粒(LDNP),用于三模态成像引导的CDT/PDT协同治疗。超小核心中的三掺杂Yb/Er/Tm以及壳层中的最佳Yb/Ce掺杂使得LDNP在近红外(NIR)激光激发下能够实现超亮的双模上转换(UC)和下转换(DC)发射。当用于光学成像时,第二近红外(NIR-II,1000 - 1700 nm)窗口的发光具有深层组织穿透性、高空间分辨率和降低的自发荧光。值得注意的是,CMSN能够通过分解H₂O₂产生O₂来缓解缺氧的TME,O₂在UC光子激发时可与样品反应生成¹O₂(PDT)。CMSN的GSH触发降解导致类芬顿Mn和Cu离子释放以产生·OH(CDT);同时,释放的Mn离子与LDNP的NIR-II发光成像、计算机断层扫描(CT)成像和磁共振(MR)成像相结合,实现TME放大的三模态效应。在这种纳米药物中,TME调节、双金属硅酸盐光敏剂、类芬顿纳米催化剂和NIR-II/MR/CT造影剂实现了“一药多用”,从而实现了高效的肿瘤诊疗。
ACS Appl Mater Interfaces. 2022-2-2
ACS Appl Mater Interfaces. 2020-11-25
Int J Nanomedicine. 2025-8-29
Antibiotics (Basel). 2025-7-17
Chem Rev. 2024-3-13