文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

具有体内疗效的基于脂质的核酸治疗药物。

Lipid-based nucleic acid therapeutics with in vivo efficacy.

机构信息

Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, Philadelphia, Pennsylvania, USA.

出版信息

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023 Mar;15(2):e1856. doi: 10.1002/wnan.1856. Epub 2022 Sep 30.


DOI:10.1002/wnan.1856
PMID:36180107
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10023279/
Abstract

Synthetic vectors for therapeutic nucleic acid delivery are currently competing significantly with their viral counter parts due to their reduced immunogenicity, large payload capacity, and ease of manufacture under GMP-compliant norms. The approval of Onpattro, a lipid-based siRNA therapeutic, and the proven clinical success of two lipid-based COVID-19 vaccines from Pfizer-BioNTech, and Moderna heralded the specific advantages of lipid-based systems among all other synthetic nucleic acid carriers. Lipid-based systems with diverse payloads-plasmid DNA (pDNA), antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA (miRNA), small activating RNA (saRNA), and messenger RNA (mRNA)-are now becoming a mature technology, with growing impact in the clinic. Research over four decades identified the key factors determining the therapeutic success of these multi-component systems. Here, we discuss the main nucleic acid-based technologies, presenting their mechanism of action, delivery barriers facing them, the structural properties of the payload as well as the component lipids that regulate physicochemical properties, pharmacokinetics and biodistribution, efficacy, and toxicity of the resultant nanoparticles. We further detail on the formulation parameters, evolution of the manufacturing techniques that generate reproducible and scalable outputs, and key manufacturing aspects that enable control over physicochemical properties of the resultant particles. Preclinical applications of some of these formulations that were successfully translated from in vitro studies to animal models are subsequently discussed. Finally, clinical success and failure of these systems starting from 1993 to present are highlighted, in a holistic literature review focused on lipid-based nucleic acid delivery systems. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.

摘要

合成载体用于治疗性核酸递送,由于其免疫原性降低、大载量能力以及在符合 GMP 规范的标准下易于制造,目前正在与病毒载体显著竞争。脂质型 siRNA 治疗药物 Onpattro 的批准,以及 Pfizer-BioNTech 和 Moderna 的两种基于脂质的 COVID-19 疫苗的临床成功,预示着脂质型系统在所有其他合成核酸载体中的特定优势。具有不同载药的脂质型系统 - 质粒 DNA (pDNA)、反义寡核苷酸 (ASO)、小干扰 RNA (siRNA)、微小 RNA (miRNA)、小激活 RNA (saRNA) 和信使 RNA (mRNA) - 现已成为一种成熟的技术,在临床上的影响越来越大。四十多年的研究确定了决定这些多组分系统治疗成功的关键因素。在这里,我们讨论了主要的核酸技术,介绍了它们的作用机制、它们面临的输送障碍、有效载荷的结构特性以及调节物理化学性质、药代动力学和生物分布、效力和毒性的成分脂质。我们进一步详细介绍了制剂参数、产生可重复和可扩展输出的制造技术的演变,以及控制所得粒子物理化学性质的关键制造方面。随后讨论了其中一些制剂的临床前应用,这些制剂已从体外研究成功转化为动物模型。最后,从 1993 年至今,在对脂质型核酸递送系统的全面文献综述中,强调了这些系统的临床成功和失败。本文属于以下类别: 治疗方法和药物发现 > 新兴技术 治疗方法和药物发现 > 用于肿瘤疾病的纳米医学 毒理学和纳米医学中的监管问题 > 纳米材料的毒理学。

相似文献

[1]
Lipid-based nucleic acid therapeutics with in vivo efficacy.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023-3

[2]
The 60-year evolution of lipid nanoparticles for nucleic acid delivery.

Nat Rev Drug Discov. 2024-9

[3]
Structure and Function of Cationic and Ionizable Lipids for Nucleic Acid Delivery.

Pharm Res. 2023-1

[4]
Evaluating the breadth of nucleic acid-based payloads delivered in lipid nanoparticles to establish fundamental differences in development.

Expert Opin Drug Deliv. 2024-10

[5]
Developing Biodegradable Lipid Nanoparticles for Intracellular mRNA Delivery and Genome Editing.

Acc Chem Res. 2021-11-2

[6]
The role of lipid components in lipid nanoparticles for vaccines and gene therapy.

Adv Drug Deliv Rev. 2022-9

[7]
Difference in the lipid nanoparticle technology employed in three approved siRNA (Patisiran) and mRNA (COVID-19 vaccine) drugs.

Drug Metab Pharmacokinet. 2021-12

[8]
Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics.

Acc Chem Res. 2019-8-9

[9]
The Biomolecular Corona of Lipid Nanoparticles for Gene Therapy.

Bioconjug Chem. 2020-9-16

[10]
Development of Lipid Nanoparticles for the Delivery of Macromolecules Based on the Molecular Design of pH-Sensitive Cationic Lipids.

Chem Pharm Bull (Tokyo). 2021

引用本文的文献

[1]
Novel delivery strategy: finasteride-loaded solid lipid nanoparticles for improved androgenetic alopecia therapy.

RSC Adv. 2025-6-4

[2]
Advances in nanomaterials for precision drug delivery: Insights into pharmacokinetics and toxicity.

Bioimpacts. 2024-11-2

[3]
Neoantigen mRNA vaccines and AA receptor antagonism: A strategy to enhance T cell immunity.

Hum Vaccin Immunother. 2025-12

[4]
Synergistic integration of mRNA-LNP with CAR-engineered immune cells: Pioneering progress in immunotherapy.

Mol Ther. 2024-11-6

[5]
Development and Optimization of a Bromothymol Blue-Based PLA2 Assay Involving POPC-Based Self-Assemblies.

Int J Mol Sci. 2024-9-1

[6]
Biomaterials-mediated CRISPR/Cas9 delivery: recent challenges and opportunities in gene therapy.

Front Chem. 2023-9-28

[7]
Mechanisms and research advances in mRNA antibody drug-mediated passive immunotherapy.

J Transl Med. 2023-10-4

[8]
Nucleotides Entrapped in Liposome Nanovesicles as Tools for Therapeutic and Diagnostic Use in Biomedical Applications.

Pharmaceutics. 2023-3-8

本文引用的文献

[1]
Biotechnological Evolution of siRNA Molecules: From Bench Tool to the Refined Drug.

Pharmaceuticals (Basel). 2022-5-5

[2]
Targeting nucleic acid-based therapeutics to tumors: Challenges and strategies for polyplexes.

J Control Release. 2022-6

[3]
Oligonucleotide delivery to antigen presenting cells by using schizophyllan.

Drug Metab Pharmacokinet. 2022-2

[4]
Microfluidic formulation of nanoparticles for biomedical applications.

Biomaterials. 2021-7

[5]
Non-viral gene delivery of the oncotoxic protein NS1 for treatment of hepatocellular carcinoma.

J Control Release. 2021-6-10

[6]
The dawn of mRNA vaccines: The COVID-19 case.

J Control Release. 2021-5-10

[7]
Ultra-small lipid nanoparticles encapsulating sorafenib and midkine-siRNA selectively-eradicate sorafenib-resistant hepatocellular carcinoma in vivo.

J Control Release. 2021-3-10

[8]
Targeting alternative splicing by RNAi: from the differential impact on splice variants to triggering artificial pre-mRNA splicing.

Nucleic Acids Res. 2021-1-25

[9]
The Performance of Minicircle DNA Versus Parental Plasmid in Gene Delivery Into HPV-18-Infected Cervical Cancer Cells.

Nucleic Acid Ther. 2021-2

[10]
Minicircle DNA Vaccine Purification and E7 Antigen Expression Assessment.

Methods Mol Biol. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索