Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
Oncode Institute, Utrecht, the Netherlands.
Nat Protoc. 2022 Dec;17(12):3028-3055. doi: 10.1038/s41596-022-00739-x. Epub 2022 Sep 30.
Revealing the 3D composition of intact tissue specimens is essential for understanding cell and organ biology in health and disease. State-of-the-art 3D microscopy techniques aim to capture tissue volumes on an ever-increasing scale, while also retaining sufficient resolution for single-cell analysis. Furthermore, spatial profiling through multi-marker imaging is fast developing, providing more context and better distinction between cell types. Following these lines of technological advance, we here present a protocol based on FUnGI (fructose, urea and glycerol clearing solution for imaging) optical clearing of tissue before multispectral large-scale single-cell resolution 3D (mLSR-3D) imaging, which implements 'on-the-fly' linear unmixing of up to eight fluorophores during a single acquisition. Our protocol removes the need for repetitive illumination, thereby allowing larger volumes to be scanned with better image quality in less time, also reducing photo-bleaching and file size. To aid in the design of multiplex antibody panels, we provide a fast and manageable intensity equalization assay with automated analysis to design a combination of markers with balanced intensities suitable for mLSR-3D. We demonstrate effective mLSR-3D imaging of various tissues, including patient-derived organoids and xenografted tumors, and, furthermore, describe an optimized workflow for mLSR-3D imaging of formalin-fixed paraffin-embedded samples. Finally, we provide essential steps for 3D image data processing, including shading correction that does not require pre-acquired shading references and 3D inhomogeneity correction to correct fluorescence artefacts often afflicting 3D datasets. Together, this provides a one-week protocol for eight-fluorescent-marker 3D visualization and exploration of intact tissue of various origins at single-cell resolution.
揭示完整组织标本的 3D 组成对于理解健康和疾病中的细胞和器官生物学至关重要。最先进的 3D 显微镜技术旨在不断扩大组织体积的捕获规模,同时保持足够的分辨率进行单细胞分析。此外,通过多标记物成像进行的空间分析也在快速发展,为细胞类型之间提供了更多的上下文和更好的区分。沿着这些技术进步的路线,我们在这里提出了一个基于 FUnGI(成像用果糖、尿素和甘油清除溶液)光学清除组织的方案,然后进行多光谱大规模单细胞分辨率 3D(mLSR-3D)成像,该方案在单次采集过程中实现多达八种荧光团的“实时”线性解混。我们的方案消除了重复照明的需要,从而可以在更短的时间内用更好的图像质量扫描更大的体积,同时减少光漂白和文件大小。为了帮助设计多重抗体面板,我们提供了一种快速且易于管理的强度均衡测定法,带有自动化分析,以设计具有平衡强度的标记物组合,适合 mLSR-3D。我们展示了各种组织的有效 mLSR-3D 成像,包括源自患者的类器官和异种移植肿瘤,并且还描述了优化的福尔马林固定石蜡包埋样本的 mLSR-3D 成像工作流程。最后,我们提供了 3D 图像数据处理的基本步骤,包括不需要预获取阴影参考的阴影校正和校正经常影响 3D 数据集的荧光伪影的 3D 非均匀性校正。总之,这提供了一个为期一周的方案,用于以单细胞分辨率对各种来源的完整组织进行八种荧光标记物的 3D 可视化和探索。