Suppr超能文献

基于 GIS 的 TOPSIS、VIKOR 和 EDAS 技术在印度东部次喜马拉雅山麓地区洪水易感性建模的比较评估。

A comparative assessment of flood susceptibility modelling of GIS-based TOPSIS, VIKOR, and EDAS techniques in the Sub-Himalayan foothills region of Eastern India.

机构信息

Department of Geography and Applied Geography, University of North Bengal, PO- North Bengal University, Dist- Darjeeling, 734013, India.

Department of Geography, Rampurhat College, PO- Rampurhat, Dist- Birbhum, 731224, India.

出版信息

Environ Sci Pollut Res Int. 2023 Feb;30(6):16036-16067. doi: 10.1007/s11356-022-23168-5. Epub 2022 Sep 30.

Abstract

In the Sub-Himalayan foothills region of eastern India, floods are considered the most powerful annually occurring natural disaster, which cause severe losses to the socio-economic life of the inhabitants. Therefore, the present study integrated geographic information system (GIS) and three comprehensive and systematic multicriteria decision-making (MCDM) techniques such as Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), Vise Kriterijumska Optimizacijaik Ompromisno Resenje (VIKOR), and Evaluation Based on Distance from Average Solution (EDAS) in Koch Bihar district for comparative assessment of the flood-susceptible zones. The multi-dimensional 21 indicators were considered, and multicollinearity statistics were employed to erase the issues regarding highly correlated parameters (i.e., MFI and long-term annual rainfall). Results of MCDM models depicted that the riparian areas and riverine "chars" (islands) are the most susceptible sectors, accounting for around 40% of the total area. The microlevel assessment revealed that flooding was most susceptible in the Tufanganj-I, Tufanganj-II, and Mathabhanga-I blocks, while Haldibari, Sitalkuchi, and Sitai blocks were less susceptible. Spearman's rank (r) tests among the three MCDM models revealed that TOPSIS-EDAS persisted in a high correlation (r = 0.714) in contrast to the relationships between VIKOR-EDAS (r = 0.651) and TOPSIS-VIKOR (r = 0.639). The model's efficiency was statistically judged by applying the receiver operating characteristic-area under the curve (ROC-AUC), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) techniques to recognize the better-suited models for mapping the flood susceptibility. The performance of all techniques is found good enough (ROC-AUC =  > 0.700 and MAE, MSE and RMSE =  < 0.300). However, TOPSIS and VIKOR have manifested an excellent outcome and are highly recommended for identifying flood susceptibility in such active flood-prone areas. Thus, this kind of study addresses the role of GIS in the construction of the flood susceptibility of the region and the performance of the respective models in a very lucid manner.

摘要

在印度东部的次喜马拉雅山麓地区,洪水被认为是最强大的年度自然灾害,它给居民的社会经济生活造成了严重损失。因此,本研究将地理信息系统(GIS)与三种全面系统的多准则决策(MCDM)技术(理想解逼近排序法(TOPSIS)、优劣解距离法(VIKOR)和逼近理想解排序法(EDAS))相结合,对科奇比哈尔地区的洪水易感性区域进行了比较评估。该研究考虑了 21 个多维指标,并采用多变量统计方法消除了高度相关参数(即 MFI 和长期年降雨量)的问题。MCDM 模型的结果表明,河岸地区和河流“沙洲”(岛屿)是最易受灾的区域,占总面积的 40%左右。微观评估显示,图法甘吉-I、图法甘吉-II 和马塔巴亨加-I 区块洪水最易受灾,而哈尔迪巴里、西塔库奇和西泰区块受灾程度较低。三个 MCDM 模型之间的斯皮尔曼等级(r)检验表明,TOPSIS-EDAS 之间存在高度相关性(r=0.714),而 VIKOR-EDAS(r=0.651)和 TOPSIS-VIKOR(r=0.639)之间的关系则不然。通过应用接受者操作特征-曲线下面积(ROC-AUC)、平均绝对误差(MAE)、均方误差(MSE)和均方根误差(RMSE)技术来判断模型的效率,以识别更适合绘制洪水易感性图的模型。所有技术的性能都被认为足够好(ROC-AUC > 0.700,MAE、MSE 和 RMSE < 0.300)。然而,TOPSIS 和 VIKOR 表现出了优异的结果,非常适合识别此类活跃的洪水易发地区的洪水易感性。因此,这项研究以非常清晰的方式说明了 GIS 在构建该地区洪水易感性和各模型性能方面的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验