Suppr超能文献

将内皮细胞编程为可灌注的微血管。

Programming the Self-Organization of Endothelial Cells into Perfusable Microvasculature.

机构信息

Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, Berkeley, California, USA.

Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA.

出版信息

Tissue Eng Part A. 2023 Feb;29(3-4):80-92. doi: 10.1089/ten.TEA.2022.0072.

Abstract

The construction of three-dimensional (3D) microvascular networks with defined structures remains challenging. Emerging bioprinting strategies provide a means of patterning endothelial cells (ECs) into the geometry of 3D microvascular networks, but the microenvironmental cues necessary to promote their self-organization into cohesive and perfusable microvessels are not well known. To this end, we reconstituted microvessel formation by patterning thin lines of closely packed ECs fully embedded within a 3D extracellular matrix (ECM) and observed how different microenvironmental parameters influenced EC behaviors and their self-organization into microvessels. We found that the inclusion of fibrillar matrices, such as collagen I, into the ECM positively influenced cell condensation into extended geometries such as cords. We also identified the presence of a high-molecular-weight protein(s) in fetal bovine serum that negatively influenced EC condensation. This component destabilized cord structure by promoting cell protrusions and destabilizing cell-cell adhesions. Endothelial cords cultured in the presence of fibrillar collagen and in the absence of this protein activity were able to polarize, lumenize, incorporate mural cells, and support fluid flow. These optimized conditions allowed for the construction of branched and perfusable microvascular networks directly from patterned cells in as little as 3 days. These findings reveal important design principles for future microvascular engineering efforts based on bioprinting and micropatterning techniques. Impact statement Bioprinting is a potential strategy to achieve microvascularization in engineered tissues. However, the controlled self-organization of patterned endothelial cells into perfusable microvasculature remains challenging. We used DNA Programmed Assembly of Cells to create cell-dense, capillary-sized cords of endothelial cells with complete control over their structure. We optimized the matrix and media conditions to promote self-organization and maturation of these endothelial cords into stable and perfusable microvascular networks.

摘要

构建具有明确结构的三维(3D)微血管网络仍然具有挑战性。新兴的生物打印策略为将内皮细胞(EC)图案化为 3D 微血管网络的几何形状提供了一种手段,但促进其自组织为有凝聚力和可灌注的微血管所需的微环境线索尚不清楚。为此,我们通过将紧密堆积的 EC 细线图案化完全嵌入 3D 细胞外基质(ECM)中来重建微血管形成,并观察不同的微环境参数如何影响 EC 行为及其自组织为微血管。我们发现,在 ECM 中包含纤维基质(如 I 型胶原)可积极影响细胞凝聚成扩展的几何形状,如索。我们还确定了胎牛血清中存在一种高分子量蛋白质(s),它会负向影响 EC 凝聚。该成分通过促进细胞突起和破坏细胞间粘附来破坏索结构。在存在纤维胶原和不存在该蛋白活性的情况下培养的内皮索能够极化、管腔化、包含壁细胞并支持流体流动。这些优化条件允许在短短 3 天内直接从图案化细胞构建分支和可灌注的微血管网络。这些发现揭示了基于生物打印和微图案化技术的未来微血管工程努力的重要设计原则。 影响说明 生物打印是实现工程组织中微血管化的一种潜在策略。然而,将图案化的内皮细胞受控地自组织成可灌注的微血管仍然具有挑战性。我们使用 DNA 编程细胞组装来创建细胞密集、毛细血管大小的内皮细胞索,完全控制其结构。我们优化了基质和培养基条件,以促进这些内皮索的自组织和成熟为稳定和可灌注的微血管网络。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验