Suppr超能文献

基于可见性图和遗传算法的跨主题情感识别卷积神经网络。

Cross-subject emotion recognition using visibility graph and genetic algorithm-based convolution neural network.

机构信息

School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China.

出版信息

Chaos. 2022 Sep;32(9):093110. doi: 10.1063/5.0098454.

Abstract

An efficient emotion recognition model is an important research branch in electroencephalogram (EEG)-based brain-computer interfaces. However, the input of the emotion recognition model is often a whole set of EEG channels obtained by electrodes placed on subjects. The unnecessary information produced by redundant channels affects the recognition rate and depletes computing resources, thereby hindering the practical applications of emotion recognition. In this work, we aim to optimize the input of EEG channels using a visibility graph (VG) and genetic algorithm-based convolutional neural network (GA-CNN). First, we design an experiment to evoke three types of emotion states using movies and collect the multi-channel EEG signals of each subject under different emotion states. Then, we construct VGs for each EEG channel and derive nonlinear features representing each EEG channel. We employ the genetic algorithm (GA) to find the optimal subset of EEG channels for emotion recognition and use the recognition results of the CNN as fitness values. The experimental results show that the recognition performance of the proposed method using a subset of EEG channels is superior to that of the CNN using all channels for each subject. Last, based on the subset of EEG channels searched by the GA-CNN, we perform cross-subject emotion recognition tasks employing leave-one-subject-out cross-validation. These results demonstrate the effectiveness of the proposed method in recognizing emotion states using fewer EEG channels and further enrich the methods of EEG classification using nonlinear features.

摘要

一种有效的情绪识别模型是基于脑电图(EEG)的脑机接口的一个重要研究分支。然而,情绪识别模型的输入通常是通过电极放置在受试者身上获得的一整套 EEG 通道。冗余通道产生的不必要信息会影响识别率并消耗计算资源,从而阻碍情绪识别的实际应用。在这项工作中,我们旨在使用基于可见性图(VG)和遗传算法的卷积神经网络(GA-CNN)优化 EEG 通道的输入。首先,我们设计了一个实验,使用电影来诱发三种情绪状态,并在不同的情绪状态下收集每个受试者的多通道 EEG 信号。然后,我们为每个 EEG 通道构建 VG,并得出代表每个 EEG 通道的非线性特征。我们使用遗传算法(GA)来找到用于情绪识别的 EEG 通道的最佳子集,并将 CNN 的识别结果用作适应度值。实验结果表明,对于每个受试者,使用 EEG 通道子集的方法的识别性能优于使用所有通道的 CNN 的识别性能。最后,基于 GA-CNN 搜索到的 EEG 通道子集,我们使用留一受试者交叉验证进行跨受试者情绪识别任务。这些结果证明了该方法在使用较少 EEG 通道识别情绪状态方面的有效性,并进一步丰富了使用非线性特征进行 EEG 分类的方法。

相似文献

5
EEG Emotion Recognition Network Based on Attention and Spatiotemporal Convolution.
Sensors (Basel). 2024 May 27;24(11):3464. doi: 10.3390/s24113464.
8
Emotion recognition with reduced channels using CWT based EEG feature representation and a CNN classifier.
Biomed Phys Eng Express. 2024 Apr 30;10(4). doi: 10.1088/2057-1976/ad31f9.
9
Subject-Independent Emotion Recognition of EEG Signals Based on Dynamic Empirical Convolutional Neural Network.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Sep-Oct;18(5):1710-1721. doi: 10.1109/TCBB.2020.3018137. Epub 2021 Oct 7.
10
ReliefF-Based EEG Sensor Selection Methods for Emotion Recognition.
Sensors (Basel). 2016 Sep 22;16(10):1558. doi: 10.3390/s16101558.

引用本文的文献

1
Gershgorin circle theorem-based feature extraction for biomedical signal analysis.
Front Neuroinform. 2024 May 16;18:1395916. doi: 10.3389/fninf.2024.1395916. eCollection 2024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验