Suppr超能文献

因果分析确定小高密度脂蛋白颗粒和身体活动是老年人长寿的关键决定因素。

Causal analysis identifies small HDL particles and physical activity as key determinants of longevity of older adults.

机构信息

Duke Molecular Physiology Institute, Duke University, Durham, NC, United States.

Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States; University of Minnesota Department of Medicine, Minneapolis, MN, United States.

出版信息

EBioMedicine. 2022 Nov;85:104292. doi: 10.1016/j.ebiom.2022.104292. Epub 2022 Sep 28.

Abstract

BACKGROUND

The hard endpoint of death is one of the most significant outcomes in both clinical practice and research settings. Our goal was to discover direct causes of longevity from medically accessible data.

METHODS

Using a framework that combines local causal discovery algorithms with discovery of maximally predictive and compact feature sets (the "Markov boundaries" of the response) and equivalence classes, we examined 186 variables and their relationships with survival over 27 years in 1507 participants, aged ≥71 years, of the longitudinal, community-based D-EPESE study.

FINDINGS

As few as 8-15 variables predicted longevity at 2-, 5- and 10-years with predictive performance (area under receiver operator characteristic curve) of 0·76 (95% CIs 0·69, 0·83), 0·76 (0·72, 0·81) and 0·66 (0·61, 0·71), respectively. Numbers of small high-density lipoprotein particles, younger age, and fewer pack years of cigarette smoking were the strongest determinants of longevity at 2-, 5- and 10-years, respectively. Physical function was a prominent predictor of longevity at all time horizons. Age and cognitive function contributed to predictions at 5 and 10 years. Age was not among the local 2-year prediction variables (although significant in univariable analysis), thus establishing that age is not a direct cause of 2-year longevity in the context of measured factors in our data that determine longevity.

INTERPRETATION

The discoveries in this study proceed from causal data science analyses of deep clinical and molecular phenotyping data in a community-based cohort of older adults with known lifespan.

FUNDING

NIH/NIA R01AG054840, R01AG12765, and P30-AG028716, NIH/NIA Contract N01-AG-12102 and NCRR 1UL1TR002494-01.

摘要

背景

死亡的硬终点是临床实践和研究环境中最重要的结果之一。我们的目标是从可获得的医学数据中发现长寿的直接原因。

方法

使用一种结合局部因果发现算法以及发现最大预测和紧凑特征集(响应的“马尔可夫边界”)和等价类的框架,我们检查了 186 个变量及其与 27 年 1507 名年龄≥71 岁的纵向社区 EPESE 研究参与者生存的关系。

发现

少至 8-15 个变量即可预测 2 年、5 年和 10 年的长寿,预测性能(接收器操作特征曲线下面积)分别为 0.76(95%CI0.69,0.83)、0.76(0.72,0.81)和 0.66(0.61,0.71)。小高密度脂蛋白颗粒数量较少、年龄较小和吸烟较少的烟龄是 2 年、5 年和 10 年长寿的最强决定因素。身体功能是所有时间预测长寿的突出预测因子。年龄和认知功能对 5 年和 10 年的预测有贡献。年龄不是 2 年的局部预测变量(尽管在单变量分析中显著),因此确定在我们的数据中,年龄不是决定长寿的可测量因素背景下 2 年长寿的直接原因。

解释

本研究的发现源于对老年社区队列进行的深度临床和分子表型数据的因果数据分析。

资金来源

NIH/NIA R01AG054840、R01AG12765 和 P30-AG028716、NIH/NIA 合同 N01-AG-12102 和 NCRR 1UL1TR002494-01。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8b0/9526168/b6795a64cd3b/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验