Suppr超能文献

关于利用地球观测来支持全球盘点进程中对国家温室气体排放和汇的估算:欧洲航天局气候变化倡议再分析与计算项目2(ESA-CCI RECCAP2)的经验教训

On the use of Earth Observation to support estimates of national greenhouse gas emissions and sinks for the Global stocktake process: lessons learned from ESA-CCI RECCAP2.

作者信息

Bastos Ana, Ciais Philippe, Sitch Stephen, Aragão Luiz E O C, Chevallier Frédéric, Fawcett Dominic, Rosan Thais M, Saunois Marielle, Günther Dirk, Perugini Lucia, Robert Colas, Deng Zhu, Pongratz Julia, Ganzenmüller Raphael, Fuchs Richard, Winkler Karina, Zaehle Sönke, Albergel Clément

机构信息

Dept. of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany.

Laboratoire Des Sciences du Climat Et de L'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France.

出版信息

Carbon Balance Manag. 2022 Oct 1;17(1):15. doi: 10.1186/s13021-022-00214-w.

Abstract

The Global Stocktake (GST), implemented by the Paris Agreement, requires rapid developments in the capabilities to quantify annual greenhouse gas (GHG) emissions and removals consistently from the global to the national scale and improvements to national GHG inventories. In particular, new capabilities are needed for accurate attribution of sources and sinks and their trends to natural and anthropogenic processes. On the one hand, this is still a major challenge as national GHG inventories follow globally harmonized methodologies based on the guidelines established by the Intergovernmental Panel on Climate Change, but these can be implemented differently for individual countries. Moreover, in many countries the capability to systematically produce detailed and annually updated GHG inventories is still lacking. On the other hand, spatially-explicit datasets quantifying sources and sinks of carbon dioxide, methane and nitrous oxide emissions from Earth Observations (EO) are still limited by many sources of uncertainty. While national GHG inventories follow diverse methodologies depending on the availability of activity data in the different countries, the proposed comparison with EO-based estimates can help improve our understanding of the comparability of the estimates published by the different countries. Indeed, EO networks and satellite platforms have seen a massive expansion in the past decade, now covering a wide range of essential climate variables and offering high potential to improve the quantification of global and regional GHG budgets and advance process understanding. Yet, there is no EO data that quantifies greenhouse gas fluxes directly, rather there are observations of variables or proxies that can be transformed into fluxes using models. Here, we report results and lessons from the ESA-CCI RECCAP2 project, whose goal was to engage with National Inventory Agencies to improve understanding about the methods used by each community to estimate sources and sinks of GHGs and to evaluate the potential for satellite and in-situ EO to improve national GHG estimates. Based on this dialogue and recent studies, we discuss the potential of EO approaches to provide estimates of GHG budgets that can be compared with those of national GHG inventories. We outline a roadmap for implementation of an EO carbon-monitoring program that can contribute to the Paris Agreement.

摘要

《巴黎协定》实施的全球盘点(GST)要求在从全球到国家层面持续量化年度温室气体(GHG)排放和清除量的能力方面取得快速进展,并改进国家温室气体清单。特别是,需要新的能力来准确确定源和汇及其趋势与自然和人为过程之间的关系。一方面,这仍然是一项重大挑战,因为国家温室气体清单遵循基于政府间气候变化专门委员会制定的指南的全球统一方法,但不同国家的实施方式可能不同。此外,许多国家仍然缺乏系统编制详细且每年更新的温室气体清单的能力。另一方面,通过地球观测(EO)量化二氧化碳、甲烷和氧化亚氮排放源和汇的空间明确数据集仍受到多种不确定性来源的限制。虽然国家温室气体清单根据不同国家活动数据的可用性采用不同方法,但与基于EO的估计值进行比较有助于增进我们对不同国家公布的估计值可比性的理解。事实上,在过去十年中,EO网络和卫星平台得到了大规模扩展,现在涵盖了广泛的基本气候变量,并具有改善全球和区域温室气体预算量化以及深化过程理解的巨大潜力。然而,没有直接量化温室气体通量的EO数据,而是有一些变量或代理的观测值,可以使用模型将其转换为通量。在此,我们报告了欧洲航天局气候变化倡议(ESA-CCI)的再分析碳循环及气候反馈多尺度过程分析项目(RECCAP2)的结果和经验教训,该项目的目标是与国家清单机构合作,增进对每个团体用于估计温室气体源和汇的方法的理解,并评估卫星和现场EO改善国家温室气体估计值的潜力。基于这种对话和近期研究,我们讨论了EO方法提供可与国家温室气体清单估计值相比较的温室气体预算估计值的潜力。我们概述了实施一项有助于《巴黎协定》的EO碳监测计划的路线图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aad/9526973/28285de64dbf/13021_2022_214_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验