Suppr超能文献

基于贝叶斯随机逼近的 I 期临床试验剂量发现设计。

A dose-finding design for phase I clinical trials based on Bayesian stochastic approximation.

机构信息

School of Statistics, East China Normal University, 3663 North Zhongshan Road, 200062, Shanghai, China.

Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE, East China Normal University, Shanghai, China.

出版信息

BMC Med Res Methodol. 2022 Oct 1;22(1):258. doi: 10.1186/s12874-022-01741-3.

Abstract

BACKGROUND

Current dose-finding designs for phase I clinical trials can correctly select the MTD in a range of 30-80% depending on various conditions based on a sample of 30 subjects. However, there is still an unmet need for efficiency and cost saving.

METHODS

We propose a novel dose-finding design based on Bayesian stochastic approximation. The design features utilization of dose level information through local adaptive modelling and free assumption of toxicity probabilities and hyper-parameters. It allows a flexible target toxicity rate and varying cohort size. And we extend it to accommodate historical information via prior effective sample size. We compare the proposed design to some commonly used methods in terms of accuracy and safety by simulation.

RESULTS

On average, our design can improve the percentage of correct selection to about 60% when the MTD resides at a early or middle position in the search domain and perform comparably to other competitive methods otherwise. A free online software package is provided to facilitate the application, where a simple decision tree for the design can be pre-printed beforehand.

CONCLUSION

The paper proposes a novel dose-finding design for phase I clinical trials. Applying the design to future cancer trials can greatly improve the efficiency, consequently save cost and shorten the development period.

摘要

背景

目前的 I 期临床试验剂量发现设计可以根据 30 名受试者样本的各种条件,正确选择 30%至 80%范围内的最大耐受剂量。然而,仍然存在效率和成本节约方面的未满足需求。

方法

我们提出了一种基于贝叶斯随机逼近的新的剂量发现设计。该设计的特点是通过局部自适应建模和毒性概率和超参数的自由假设来利用剂量水平信息。它允许灵活的目标毒性率和不同的队列大小。我们通过先验有效样本量将其扩展到可以容纳历史信息。我们通过模拟比较了该设计与一些常用方法在准确性和安全性方面的性能。

结果

平均而言,当最大耐受剂量位于搜索域的早期或中期位置时,我们的设计可以将正确选择的百分比提高到约 60%,否则与其他竞争方法相比性能相当。提供了一个免费的在线软件包以方便应用,其中可以预先打印设计的简单决策树。

结论

本文提出了一种用于 I 期临床试验的新的剂量发现设计。将该设计应用于未来的癌症试验中,可以大大提高效率,从而节省成本并缩短开发周期。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/398f/9526928/4e9d90ea9e53/12874_2022_1741_Fig1_HTML.jpg

相似文献

1
A dose-finding design for phase I clinical trials based on Bayesian stochastic approximation.
BMC Med Res Methodol. 2022 Oct 1;22(1):258. doi: 10.1186/s12874-022-01741-3.
2
The 3 + 3 design in dose-finding studies with small sample sizes: Pitfalls and possible remedies.
Clin Trials. 2024 Jun;21(3):350-357. doi: 10.1177/17407745241240401. Epub 2024 Apr 15.
3
A practical Bayesian design to identify the maximum tolerated dose contour for drug combination trials.
Stat Med. 2016 Nov 30;35(27):4924-4936. doi: 10.1002/sim.7095. Epub 2016 Aug 31.
4
Design considerations for phase I/II dose finding clinical trials in Immuno-oncology and cell therapy.
Contemp Clin Trials. 2020 Sep;96:106083. doi: 10.1016/j.cct.2020.106083. Epub 2020 Jul 11.
5
A Bayesian adaptive design for cancer phase I trials using a flexible range of doses.
J Biopharm Stat. 2018;28(3):562-574. doi: 10.1080/10543406.2017.1372774. Epub 2017 Oct 6.
6
Small-sample behavior of novel phase I cancer trial designs.
Clin Trials. 2013 Feb;10(1):63-80. doi: 10.1177/1740774512469311.
7
Adaptive design for identifying maximum tolerated dose early to accelerate dose-finding trial.
BMC Med Res Methodol. 2022 Apr 6;22(1):97. doi: 10.1186/s12874-022-01584-y.
8
Borrowing historical information to improve phase I clinical trials using meta-analytic-predictive priors.
J Biopharm Stat. 2022 Jan 2;32(1):34-52. doi: 10.1080/10543406.2022.2058526. Epub 2022 May 20.
9
Incorporating historical information to improve dose optimization design with toxicity and efficacy endpoints: iBOIN-ET.
Pharm Stat. 2023 May-Jun;22(3):440-460. doi: 10.1002/pst.2281. Epub 2022 Dec 13.
10
Bayesian adaptive model selection design for optimal biological dose finding in phase I/II clinical trials.
Biostatistics. 2023 Apr 14;24(2):277-294. doi: 10.1093/biostatistics/kxab028.

本文引用的文献

1
Hi3 + 3: A model-assisted dose-finding design borrowing historical data.
Contemp Clin Trials. 2021 Oct;109:106437. doi: 10.1016/j.cct.2021.106437. Epub 2021 May 18.
2
Incorporating historical information to improve phase I clinical trials.
Pharm Stat. 2021 Nov;20(6):1017-1034. doi: 10.1002/pst.2121. Epub 2021 Apr 1.
3
The i3+3 design for phase I clinical trials.
J Biopharm Stat. 2020 Mar;30(2):294-304. doi: 10.1080/10543406.2019.1636811. Epub 2019 Jul 15.
4
Accuracy, Safety, and Reliability of Novel Phase I Trial Designs.
Clin Cancer Res. 2018 Sep 15;24(18):4357-4364. doi: 10.1158/1078-0432.CCR-18-0168. Epub 2018 Apr 16.
5
Keyboard: A Novel Bayesian Toxicity Probability Interval Design for Phase I Clinical Trials.
Clin Cancer Res. 2017 Aug 1;23(15):3994-4003. doi: 10.1158/1078-0432.CCR-17-0220. Epub 2017 May 25.
6
A Bayesian interval dose-finding design addressingOckham's razor: mTPI-2.
Contemp Clin Trials. 2017 Jul;58:23-33. doi: 10.1016/j.cct.2017.04.006. Epub 2017 Apr 27.
7
Bayesian Optimal Interval Design: A Simple and Well-Performing Design for Phase I Oncology Trials.
Clin Cancer Res. 2016 Sep 1;22(17):4291-301. doi: 10.1158/1078-0432.CCR-16-0592. Epub 2016 Jul 12.
8
A Bayesian dose-finding design for drug combination clinical trials based on the logistic model.
Pharm Stat. 2014 Jul-Aug;13(4):247-57. doi: 10.1002/pst.1621. Epub 2014 May 15.
9
Modified toxicity probability interval design: a safer and more reliable method than the 3 + 3 design for practical phase I trials.
J Clin Oncol. 2013 May 10;31(14):1785-91. doi: 10.1200/JCO.2012.45.7903. Epub 2013 Apr 8.
10
Dose-finding designs: the role of convergence properties.
Int J Biostat. 2011 Oct 27;7:Article 39. doi: 10.2202/1557-4679.1298.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验