Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.
Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, Republic of Korea.
Autophagy. 2023 Jun;19(6):1642-1661. doi: 10.1080/15548627.2022.2126617. Epub 2022 Oct 2.
In the N-degron pathway, N-recognins recognize cognate substrates for degradation via the ubiquitin (Ub)-proteasome system (UPS) or the autophagy-lysosome system (hereafter autophagy). We have recently shown that the autophagy receptor SQSTM1/p62 (sequestosome 1) is an N-recognin that binds the N-terminal arginine (Nt-Arg) as an N-degron to modulate autophagic proteolysis. Here, we show that the N-degron pathway mediates pexophagy, in which damaged peroxisomal fragments are degraded by autophagy under normal and oxidative stress conditions. This degradative process initiates when the Nt-Cys of ACAD10 (acyl-CoA dehydrogenase family, member 10), a receptor in pexophagy, is oxidized into Cys sulfinic (Cys) or sulfonic acid (Cys) by ADO (2-aminoethanethiol (cysteamine) dioxygenase). Under oxidative stress, the Nt-Cys of ACAD10 is chemically oxidized by reactive oxygen species (ROS). The oxidized Nt-Cys2 is arginylated by -encoded R-transferases, generating the RC N-degron. RC-ACAD10 marks the site of pexophagy via the interaction with PEX5 and binds the ZZ domain of SQSTM1/p62, recruiting LC3-autophagic membranes. In mice, knockout of either responsible for Nt-arginylation or leads to increased levels of peroxisomes. In the cells from patients with peroxisome biogenesis disorders (PBDs), characterized by peroxisomal loss due to uncontrolled pexophagy, inhibition of either ATE1 or SQSTM1/p62 was sufficient to recover the level of peroxisomes. Our results demonstrate that the Cys-N-degron pathway generates an N-degron that regulates the removal of damaged peroxisomal membranes along with their contents. We suggest that tannic acid, a commercially available drug on the market, has a potential to treat PBDs through its activity to inhibit ATE1 R-transferases. ACAA1, acetyl-Coenzyme A acyltransferase 1; ACAD, acyl-Coenzyme A dehydrogenase; ADO, 2-aminoethanethiol (cysteamine) dioxygenase; ATE1, arginyltransferase 1; CDO1, cysteine dioxygenase type 1; ER, endoplasmic reticulum; LIR, LC3-interacting region; MOXD1, monooxygenase, DBH-like 1; NAC, N-acetyl-cysteine; Nt-Arg, N-terminal arginine; Nt-Cys, N-terminal cysteine; PB1, Phox and Bem1p; PBD, peroxisome biogenesis disorder; PCO, plant cysteine oxidase; PDI, protein disulfide isomerase; PTS, peroxisomal targeting signal; R-COX, Nt-Arg-CysOX; RNS, reactive nitrogen species; ROS, reactive oxygen species; SNP, sodium nitroprusside; UBA, ubiquitin-associated; UPS, ubiquitinproteasome system.
在 N-deg 途径中,N-识别蛋白通过泛素 (Ub)-蛋白酶体系统 (UPS) 或自噬溶酶体系统 (以下简称自噬) 识别降解同源底物。我们最近表明,自噬受体 SQSTM1/p62 (sequestosome 1) 是一种 N-识别蛋白,它通过结合 N 端精氨酸 (Nt-Arg) 作为 N-降解基序来调节自噬蛋白水解。在这里,我们表明 N-降解基序介导 pexophagy,在此过程中,受损的过氧化物酶体片段在正常和氧化应激条件下通过自噬降解。当过氧化物酶体片段受体 ACAD10(酰基辅酶 A 脱氢酶家族成员 10)的 Nt-Cys 被 ADO(2-氨基乙硫醇 (半胱胺) 加双氧酶)氧化成 Cys 亚磺酸 (Cys) 或磺酸 (Cys) 时,这种降解过程就会开始。在氧化应激下,ACAD10 的 Nt-Cys 被活性氧物质 (ROS) 化学氧化。氧化的 Nt-Cys2 被编码的 R-转移酶精氨酸化,产生 RC N-降解基序。RC-ACAD10 通过与 PEX5 的相互作用标记 pexophagy 部位,并与 SQSTM1/p62 的 ZZ 结构域结合,招募 LC3 自噬膜。在缺乏负责 Nt-精氨酸化的 或 的小鼠中,过氧化物酶体水平增加。在过氧化物酶体生物发生障碍 (PBD) 患者的细胞中,由于不受控制的 pexophagy,过氧化物酶体丢失,抑制 ATE1 或 SQSTM1/p62 足以恢复过氧化物酶体的水平。我们的结果表明,Cys-N-降解基序产生 N-降解基序,调节受损过氧化物酶体膜及其内容物的清除。我们建议,市场上可商购的单宁酸通过抑制 ATE1 R-转移酶的活性,具有治疗 PBD 的潜力。ACAA1,乙酰辅酶 A 酰基转移酶 1;ACAD,酰基辅酶 A 脱氢酶;ADO,2-氨基乙硫醇 (半胱胺) 加双氧酶;ATE1,精氨酸转移酶 1;CDO1,半胱氨酸双加氧酶 1 型;ER,内质网;LIR,LC3 相互作用区;MOXD1,单加氧酶,DBH 样 1;NAC,N-乙酰半胱氨酸;Nt-Arg,N 端精氨酸;Nt-Cys,N 端半胱氨酸;PB1,Phox 和 Bem1p;PBD,过氧化物酶体生物发生障碍;PCO,植物半胱氨酸氧化酶;PDI,蛋白质二硫键异构酶;PTS,过氧化物酶体靶向信号;R-COX,Nt-Arg-CysOX;RNS,活性氮物质;ROS,活性氧物质;SNP,硝普钠;UBA,泛素相关;UPS,泛素蛋白酶体系统。